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Abstract

Neural oscillatory patterns can be characterized by a number of attributes such as
frequency, amplitude, duty cycle, characteristic transition times between silent and
active phases, and number of spikes per burst. The value of these attributes are
determined by the interplay of the participating currents and, for the appropriate
currents, can be captured the maximal synaptic conductances. Experimental and
theoretical work has shown that multiple combinations of parameters can generate
patterns with the same attributes [25, 26, 20, 21]. This endows neurons and
networks with flexibility to adapt to changing environments and is substrate for
homeostatic regulation [21]. At the same time, it presents modelers with the
phenomenon of unidentifiability in parameter estimation. Attribute Level sets (LSs)
in parameter space are curves (surfaces or hypersurfaces) joining parameter values
for which a given attribute is constant. Whether and under what circumstances the
attribute LSs for individual neurons are conserved in the networks in which they are
embedded and what additional network level sets emerge is not well understood.

In this work we describe a canonical (C-) model for oscillations LSs for single cells
exhibiting a wide range of realistic neuronal oscillatory patterns. The model can be
considered as an idealization of the familiar, conductance-based two-dimensional
models. Under certain conditions, the LSs for individual C-cells are preserved in the
network of C-cells. Moreover, new LSs emerge in these networks. We characterize
them in terms of the single cell LSs and the connectivity parameters for both
homogeneous and heterogeneous networks where individual cells are identical or
not, respectively, within the considered LS.
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Resumen

Los patrones oscilatorios neuronales pueden estar caracterizados por un cierto
número de atributos como la frequencia, la amplitud, el ciclo de trabajo, los tiem-
pos característicos de transición entre fases silenciosas y activas, y el número de
potenciales de acción por ráfaga. El valor de estos atributos está determinado por la
interacción de las corrientes participantes y, para las corrientes apropiadas, se puede
expresar en términos de las conductancias sinápticas máximas. Trabajo experimental
y teórico ha mostrado que múltiples combinaciones de parámetros pueden generar
patrones con los mismos atributos [25, 26, 20, 21]. Esto dota a las neuronas y
redes con la flexibilidad para adaptarse a ambientes cambiantes y es fuente para la
regulación homeostática [21]. Al mismo tiempo, los modeladores se encuentran con
el fenómeno de inidentifiabilidad en la estimación de parámetros. Los conjuntos
de nivel de los atributos (LSs) en el espacio de parámetros son curvas (superficies
o hipersuperficies) que consisten en un conjuntos de valores de parámetros que
mantienen constante un atributo. Si y bajo qué circunstancias los LSs de las neuronas
individuales son conservados en las redes de las que forman parte y qué nuevos LSs
emergen en la red no está bien entendido.

En este trabajo describimos un modelo canónico (C-) para LSs de oscilaciones de
una célula individual, que exhibe un amplio rango de patrones oscilatorios realistas.
El modelo puede ser considerado como una idealización de los familiares modelos
de dos dimensiones basados en conductancias. Bajo ciertas condiciones, los LSs de
una célula individual son preservados en redes compuestas por C-células. Además,
nuevos LSs emergen en estas redes. Los caracterizamos en términos de los LSs de la
célula individual y los parámetos de conectividad tanto en redes homogeneas como
en heterogeneas donde los células son identicas o no, respectivamente, dentro del
LS considerado.

Palabras clave: conjuntos de nivel, oscilaciones, redes neuronales.
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Resum

Els patrons oscil·latoris neuronals poden estar caracteritzats per un cert nombre
d’atributs com la freqüència, l’amplitud, el cicle de treball, els temps característics
de transició entre fases silencioses i actives, i el nombre de potencials d’acció per
ràfega. El valor d’aquests atributs està determinat per la interacció dels corrents
participants i, per als corrents apropiades, es pot expressar en termes de les conduc-
tàncies sinàptiques màximes. Treball experimental i teòric ha mostrat que múltiples
combinacions de paràmetres poden generar patrons amb els mateixos atributs [25,
26, 20, 21]. Això dota les neurones i xarxes amb la flexibilitat per adaptar-se a
ambients canviants i és font per a la regulació homeostàtica [21]. A el mateix temps,
els modeladors es troben amb el fenomen de inidentifiabilitat en l’estimació de
paràmetres. Els conjunts de nivell dels atributs (LSs) en l’espai de paràmetres són
corbes (superfícies o hipersuperficies) que consisteixen en un conjunts de valors de
paràmetres que mantenen constant un atribut. Si i sota quines circumstàncies els
LSs de les neurones individuals són conservats en les xarxes de les que formen part i
quins nous LSs emergeixen a la xarxa no està ben entès.

En aquest treball descrivim un model canònic (C-) per LSs d’oscil·lacions d’una
cèl·lula individual, que exhibeix un ampli rang de patrons oscil·latoris realistes.
El model pot ser considerat com una idealització dels familiars models de dues
dimensions basats en conductàncies. Sota certes condicions, els LSs d’una cèl·lula
individual són preservats en xarxes compostes per C-cèl·lules. A més, nous LSs
emergeixen en aquestes xarxes. Els caracteritzem en termes dels LSs de la cèl·lula
individual i els paràmetres de connectivitat tant en xarxes homogènies com en het-
erogènies on els cèl·lules són idèntiques o no, respectivament, dins l’LS considerat.

Paraules clau: conjunts de nivell, oscil·lacions, xarxes neuronals.
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Introduction 1
1.1 Background

The link between degeneracy in biological systems and structural unidentifiability in
parameter models.

1.1.1 Degeneracy in Biological Systems

Cellular homeostasis mechanisms allow a neuron to maintain a functional target
pattern in the presence of changes in their membrane properties and electrical
activity. Homeostatic regulation is thus associated with stable neuronal activity which
enables the brain with the necessary reliability in order to perform their functions
properly. By contrast, the capabilities of the brain to learn, store memory and
adapt to changes in the environment are associated with certain network plasticity
which lead to changing and dynamical synapses between neurons. Together with
cellular homeostasis mechanisms, it has been suggested some synaptic homeostasis
mechanisms, such as synaptic scaling, which prevent the network to become unstable
and, at the same time, they allow plastic changes [1]. Moreover, homeostatic
regulation mechanisms at the network level has also been reported.

Among homeostatic regulation mechanisms, it is the activity-dependent homeostatic
regulation (ADHR) mechanism. It constitutes a negative feedback system through
which neurons are able to restore their properties and compensate changes due to
external perturbations [1]. It allows neurons to maintain the so-called target activity
level or functional activity.

Neuronal and network properties need to be constrained in order to achieve the
target neural behavior of any activity-dependent homeostatic mechanism, both at the
neuron and network level. Usually, these constraints result in regions on parameter
space which generate a desired neuron behavior. When this target activity level is
characterized by certain attributes, attribute LSs can represent these regions. The
fact that a wide range of parameter combinations can generate the same neuron
output make neurons more robust to perturbations.
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The idea that target activity levels can be achieved with different parameters combi-
nations, instead of having to tune parameters to specific unique values has experi-
mental evidence. In [29], they show how the value of two currents were different in
cells showing almost identical electrical activity patterns, Fig. (1.1) .

Fig. 1.1.: Similar neuron activity with different values of sodium and calcium cur-
rents. Left: similar voltage traces of three different neurons. Right: bar plots
showing the value of the sodium (INa) and calcium (ICa) current for each neuron.
It is also shown the net current through the membrane (−CdV/dt). Figure taken
from [29].

Moreover the so-called animal-to-animal parameter variability, consisting on pa-
rameter differences on a given neuron type from animal to animal, also supports
the idea [28]. Several-fold variations in conductance densities from one animal to
another have been reported.

Theoretical work using computational models has also shown that similar network
activity can be generated with several combinations of synaptic strengths and
intrinsic properties [25]. In this work, a three-cell (AB/PD-LP-PY) network model
for the pyloric network of the crustacean stomatogastric ganglion (STG) was used
to show that different sets of synaptic and intrinsic parameters give rise to similar
network activity, Fig. (1.2).

Furthermore, neuronal parameters seem not to vary independently among different
solutions on parameter space for the same neuronal target, but it seems that there
are dependencies among parameters producing parameter correlations [12].

1.1.2 Parameter Estimation Unidentifiability

Parameter variability must be taken into account on model construction, when
it is intended to replicate experimental observations. Since only a small fraction

2 Chapter 1 Introduction



Fig. 1.2.: Similar pyloric rhythms from different networks. Top: voltage traces for each
cell type (AB/PD, LP and PY) for two different networks. Bottom: parameter val-
ues of several membrane and synaptic parameters. To one network it corresponds
plots (a)-(c). Plots (b)-(d) correspond to the other network. Figure taken from
[25]

of neuron properties are experimentally available, experimentally non-accessible
parameters need to be determined and fit to experimental data. The ability of the
models to make predictions and to provide mechanistic explanations depends on
the reliability of this process.

Neuronal parameter optimization is the process of identifying sets of parameters
that lead to a desired electrical activity pattern in a neuron or neuronal network
model that is not fully constrained by experimental data [24]. In order to perform
this process, a large number of parameter estimation techniques (PE) and tools are
available to scientist, which involve hand-tuning, optimization methods, such as the
gradient method, or parameter space explorations techniques [22]. A key feature of
these methods is a measure, which indicates how well the model is able to produce
the desired electric target. Parameter sets which acceptably reproduce the desired
electrical activity are called the solutions for the optimization problem. When there
are multiple solutions for an optimization problem, the set of solution is known as
the “solution space” of the problem [22].

1.1 Background 3



The fact that the target activity level of a neuron is presumably an electrical activity
pattern rather than specific set of parameters on a given model, give rise to the
degeneracy problem. Degeneracy refers to the situations where multiple sets of
parameters values can produce the same observable output, therefore making the
inverse problem ill-posed, i.e., determining the model parameters from observable
experimental data is not a well-defined problem.

Two sources account for parameters to be unidentifiable: structural and practical
unidentifiability. Practical identifiability is related to experimental/noisy data. One
can at best expect to estimate distribution of parameters around a "true" mean.

Structural identifiability refers to the problem of whether it is possible to uniquely
determine the unknown model parameters from a set of observable outputs. It is only
based on the inherent structure of a given model and it is the type of unidentifiability
of interest to this project since it is thought to have a direct connection with biological
degeneracy and homeostatic regulation processes.

Several techniques are available the for analysis of structural identifiability, specially
in linear ODE models [10]. Furthermore more recent methods have been proposed
for general non-linear ODE models [16]. Although the increasing difficulty of these
methods as models become more complex, the structural identifiability analysis
should be investigated in any parameter identification problem.

The general framework in which structural identifiability is performed involve a
dynamical system model of the form

ẋ(t) = f(x(t), t, u(t), θ), x(t0) = x0 (1.1)

y(t) = h(x(t), t, θ) (1.2)

where x(t) represent state variables, t is the time, u(t) is a given input, θ represent
model parameters and y(t) is the output (measurements/observations). Initial
conditions are given by x0.

Mathematically, considered a system of the form Eqs. (1.1)-(1.2), a given individual
parameter set θ is said to be structurally identifiable, [6], if for almost every set of
parameters θ̄ and almost all initial conditions

y(x(t), t, θ̄) = y(x(t), t, θ) =⇒ θ̄ = θ (1.3)

Otherwise, the system model is said to be structurally unidentifiable. Typically,
unidentifiable model parameters form identifiable combinations, which consist in
set of parameters which can be identifiable as a set [6].

4 Chapter 1 Introduction



All considered, the biological consequences of homeostatic regulation mechanisms
not only at the neuron level, but also at a network level involving synaptic connec-
tions, make the model construction task quite challenging.

On the one hand, the physiological parameter variability must be reflected in the
model. From a mathematical perspective, attribute level sets must show properties
in accordance to the biology beyond these mathematical structures. The study of
attribute level sets in single neuron and network models try to shed light on this
issue.

On the other hand, the ability of models to make predictions and to provide mecha-
nistic explanations depends on how reliable model parameters are tuned in order
to reflect realistic cellular and network behavior based on experimental attribute
measurements. Degeneracy of biological systems, which seem to be inherent to the
biology nature, imposes several difficulties on this process.

1.2 Significance

Some parameter estimation techniques, such as parameter space exploration tech-
niques, are aware of the structural unidentifiability of neuron and network models
and focus on finding regions on parameter space with a desired neuron or network
activity. Those model scan the parameter space producing the so-called “model
databases”, which provide valuable information of how parameters could be homeo-
statically regulated in order to produce a target activity [23]. When a target behavior
is characterized by the value of certain attributes, attribute level sets appear. They
represent point on parameter space for which a given attribute is constant, i.e., man-
ifolds on parameter space preserving a given attribute value. If a neural or network
activity target is characterized by several attributes values, the intersection of their
corresponding manifolds represents the region on parameter space preserving all
attributes values characterizing the activity target.

Among the disadvantages of these method, it is the high computational cost and the
exponentially increase in number of simulations as the parameter space is extended,
which is usually required in neural networks. Moreover methods are mainly qualita-
tive. In this respect, the study of basic level sets properties in simple single neuronal
and network models can help in the understanding of how homeostatic rules are
linked with attribute level sets.

1.2 Significance 5



1.3 Project Design

The goal of the project is to study how individual neuron LSs are behaved when cells
become part of a network. We ask whether and under what conditions individual
attribute LSs are preserved in a network structure and how new network level sets
emerge.

An oversimplified single neuron model is used to represent the behavior of a single
cell. Characterizing degeneracy is this simple model, we are able to find conditions
on connectivity parameter space for the preservation of individual level sets. When
these conditions are not guaranteed, new network level sets emerge on parameter
spaces which might involve both connectivity and intrinsic parameters from single
cells. We consider networks with different degree of complexity based on individ-
ual intrinsic parameters, distinguishing between homogeneous and heterogeneous
networks and compare LSs properties between them.

1.4 Project Information

Part of this project was selected for The Virtual Dana Knox Student Research Show-
case (New Jersey Institute of Technology).

The full project has also been chosen for a poster presentation at the Organization
for Computational Neuroscience (CNS) annual meeting (2021). Fig. (1.3) shows
the poster of this project for the meeting.

1.5 Project Overview

• Chapter 1: Introduction. It is this chapter. The significance of the project
is stated, for which some background on the field is given. It is also given a
summary of the project and an overview of the thesis section by section.

• Chapter 2: Background. Theoretical background on computational neuro-
science in the context of this work is presented. The section gives an overview
of basic single neuron and synaptic dynamics model. Furthermore some math-
ematical models for neuronal networks are presented. Some concepts are
illustrated on a realistic biophysical network model of the basal ganglia.

6 Chapter 1 Introduction
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Neural	oscillatory	patterns	can	be	characterized	by	a	
number	of	attributes,	whose	value	is	determined	by	the	
interplay	of	the	participating	currents.	Experimental	and	
theoretical	work	has	shown	that	multiple	combinations	of	
parameters	can	generate	patterns	with	the	same	attributes	
[1-4].	This	endows	neurons	and	networks	with	flexibility	to	
adapt	to	changing	environments	and	is	substrate	for	
homeostatic	regulation	[4].	

At	the	same	time,	it	presents	modelers	with	the	
phenomenon	of	unidentifiability	in	parameter	estimation.	
Attribute	level	sets	(LSs)	in	parameter	are	manifolds	on	
parameter	space	for	which	a	given	attribute	is	constant.	
Whether	and	under	what	circumstances	the	attribute	LSs	
for	individual	neurons	are		conserved	in	the	networks	in	
which	they	are	embedded	and	what	additional	network	
level	sets	emerge	is	not	well	understood.

In	this	work	we	describe	a	canonical	(C-)	model	for	
oscillations	LSs	for	single	cells.	Under	certain	conditions,	
the	LSs	for	individual	C-cells	are	preserved	in	networks	of	
C-cells.	Moreover	new	LSs	emerge	in	these	networks.	We	
characterize	them	for	both	homogeneous	and	
heterogeneous	networks,	where	individual	cells	are	
identical	or	not.

Abstract

• The self-connected	cell	do	not preserve	LSs.

• Type-I	and	type-II	heterogeneous (cells belong to	different
individual	amplitude LSs)	two-cell networks preserve	
individual	LSs on two-dimmensional manifolds on
parameter space.

• Gap	junctions preserve	LSs in	type-I	heterogeneous
networks (cells belong to	the same amplitude and	
frequency LS)

Methods

The	Activity-dependent	homeostatic	regulation	(ADHR)	mechanism	constitute	a	negative	
feedback	system	through	which	neurons	are	able	to	restore	their	properties	and	
compensate	changes	due	to	perturbations.	It	allows	neurons	to	maintain	their	so-called	
target	activity	level.

Neuronal	activity	properties	need	to	be	constrained	in	order	to	achieve	the	target	activity	
level	of	any	ADHR.	Usually,	these	constraints	result	in	regions	on	parameter	space	which	
generate	a	desired	neuron	behavior.		When	characterized	by	certain	attributes,	attribute	
LSs	can	represent	these	regions.

Introduction

ü Gap	junctions	do	not	preserve	LSs	on	type-II	
heterogeneous	networks	(cells	belong	to	different	
amplitude	LS).	However	a readjust	in	self-
connectivities guarantees	LSs	preservation.

ü Several	LSs	have	been	computed	(1,2-dimensional	
LSs	on	1,2,3	or	4-dimensional	parameter	spaces).

ü The	type	of	network	(homogeneous	or	
heterogeneous)	and	the	model	structure	does	
affect	predictions	in	[3].	
*Prediction	in	[3]:	If	a	particular	homeostatic

Conclusions

The	mathematical	oscillator	(C-model)	used	to	represent	
the	behavior	of	a	neuron	is	given	by

It	is	a	type	of	the	so-called	Lambda-Omega	systems	with	a	
single	limit	circle	in	which	degeneracy	is	easily	
characterized.	Amplitude		and	frequency	LSs	are	given	by

The	general	form	of	the	linear	connectivity	networks	of	
Lambda-Omega	systems	are

where																						is	the	connectivity	matrix

Results

Neuronal	parameter	optimization	is	the	process	of	identifying	sets	of	parameters	that	
lead	to	a	desired	electrical	activity	pattern	in	a	given	neuron	or	neuronal	network	model	
that	is	not	fully	determined	by	experimental	data.

Structural	degeneracy	(of	a	given	parameter	model)	refers	to	the	situations	where	
multiple	sets	of	parameters	values	can	produce	the	same	observable	output,	therefore	
making	the	inverse	problem	ill-posed. It	is	only	based	on	the	inherent	structure	of	a	given	
model

Degeneracy	in	Biological	Systems Parameter	Estimation	Unidentifiability

The	idea	a	given	that	target	activity	level	can	be	
achieved	with	different	parameter	combinations	
and	that	almost	identical	activity	can	arise	from	
different	intrinsic	properties	has	both	
experimental	and	theoretical	evidence	[1,5].	 Figure	1. Similar	neuron	activity,	From	[5]	
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λ
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Network	
model

If	we	create	ground	truth	(fake)	data	using	a	
particular	set	of	parameters	values,	it	is	not	clear	
(¿?)	how	to	retrieve	the	biophysical	parameter	
values	used. Figure	2. Degeneracy	scheme	

for	the	neuron	model
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ü 2-dimensional	total-degenerated LSs on
connectivity parameter space.

ü 1-dimensional	total-degenerated LSs on
connectivity parameter space (Figure	9)

ü 1-dimensional	total-degenerated LSs on
each cell’s intrinsic parameter space.	

ü 1-dimensional	total-degenerated LSs on the
connectivity parameter space.	(Figure	10)

Future	Work

mechanism	maintain	m	independent	
characteristics	(or	attributes)	of	neuronal	
activity,	then	at	least	m	parameters	must	be	
changed	as	a	response	to	a	perturbation	in	one	
parameter	of	the	system.

How	related	are	model	symmetries	with	the	
preservation	of	LSs? How	closely	related	are	
homeostatic	mechanisms	(LSs)	at	the	neuron	and	
network	level?	What	do	we	exactly	mean	by	a	
network	LS?	How	could	one	develop	methods	for	the	
disambiguation	of	degeneracy?

ü 2-dimensional	total-degenerated LSs on the
intrinsic parameter space (Figure	11)

Figure	9. Figure	10. Figure	11.
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Fig. 1.3.: Poster for the CNS 2021 annual meeting.

• Chapter 3: Previous work. Review of previous work related with attribute
level sets. Two papers and one PhD rotation project are mainly summarized.

• Chapter 4: Methods. This section introduces the single neuron model, as well
as, the type of networks considered in this work. Furthermore, degeneracy is
characterized in this single neuron model. In addition, important concepts for
following sections are defined.

• Chapter 5: Level Sets Preservation in ΛΩ2−Networks. Results are pre-
sented. They include conditions for the preservation of level sets in two-cell
networks.

• Chapter 6: Newly Emerged Network Level Sets. Results are presented.
Systematic qualitative study of the newly emerged network level sets both in
the self-connected cell and the two-cell network.

• Chapter 7: Discussion. Final summary of the work, in which results are
discussed and new lines of research are mentioned. Moreover a personal
conclusion is done.

1.5 Project Overview 7



Two appendices are also included:

• Appendix A: On Level Sets Preservation. Mathematical derivation for level
sets preservation in the two-cell network. The appendix supports Chapter 5.

• Appendix B: Codes. Some representative (non-exhaustive) set of files used in
this project are shown.
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Background on
Computational Neurocience

2

The goal of this section is not to give a detailed description of most important
concepts regarding computational neuroscience, but to give a brief overview of most
basic and relevant concepts in the context of this work.

Due to the fact that there exist a large number of neuron models of all levels of
complexity we present some basic and widely used single neuron models. They are
of relevance to our work since they have been previously used in the study of the
degeneracy problem.

Since our work concerns the study of the degeneracy problem in an oversimplified
neuron network, we also describe how biophysical realistic neuron networks are built
connecting different neurons. We describe synaptic dynamical models: electrical and
chemical synapses, as well as, some mathematical models for neuron networks.

Some concepts are illustrated considering an example of a realistic biophysical
network model of the basal ganglia, [27], a part of the brain. The network models
includes four neural structures: the thalamus (TC), the subthalamic nucleus (STN),
the external segment of the globus pallidus (GPe) and the internal segment of the
globus pallidus (GPi). We shall refer to this models as the STN-GPe-GPi-TC model.
During this research experience, I have also had the opportunity of working with
this computational model. The goal was to understand how pathological rhythms in
pakinsonian subjects, [9], are originated.

The contents of this section are mainly based on [31, 5, 3, 11, 15].

2.1 Single neuron models

The original Hodgkin-Huxley model for the generation of an action potential is
presented. In addition, we introduce a more general class of models known as
conductance-based models, which are based on the Hodgkin-Huxley formalism.

9



Finally, we present some reduced and two-variable models which are of interest to
perform a detailed mathematical analysis.

An exhaustive description of models is not presented. Moreover, models are pre-
sented from the mathematical perspective and less attention is given to biophysical
interpretations. However, we believe that this section can help the reader to acquire
the fundamental knowledge in computational neuroscience in order to contextualize
our work.

2.1.1 The Hodgkin-Huxley model

The classic Hodgkin-Huxley model, [2], suggests that an electrical circuit can repre-
sent electrical membrane activity. As a single-compartment model, neuron’s spatial
structure is neglected and the membrane potential of a neuron is described by a
single variable V .

The model focus on the interplay of different ionic currents to generate spiking
activity. It consist of four differential equations. One of them is for the membrane
potential (V ) and the remaining three equations for channel gating variables (n, m
and h) which represent the voltage-dependent channel kinetics. The channel opening
and closing rates determine the current carried through the channel. Equations can
be written as

C
dV

dt
= −ḡKn

4(V − EK)− ḡNam
3h(V − ENa)− ḡL(V − EL) (2.1)

dn

dt
= n∞(V )− n

τn(V ) (2.2)

dm

dt
= m∞(V )−m

τm(V ) (2.3)

dh

dt
= h∞(V )− h

τh(V ) (2.4)

where C is the membrane capacitance, ḡK , ḡNa and ḡL are the potassium, sodium
and leak maximal conductances and EK , ENa and EL are the potassium, sodium
and leak reversal potentials.

Ionic currents

IK = ḡKn
4(V − EK) and INa = ḡNam

3h(V − ENa) (2.5)

10 Chapter 2 Background on Computational Neurocience



are responsible for the generation of the action potential. However, the leak cur-
rent

IL = ḡL(V − EL) (2.6)

represents all time-independent contributions to the membrane currents.

Fig. (2.1) shows steady-states activation and inactivation functions (n∞(V ), m∞(V )
and h∞(V )) and time constants (τn(V ), τm(V ) and τh(V )) on the Hodgkin-Huxley
type model.
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Fig. 2.1.: Steady state activation/inactivation curves and time constants in the
Hodgkin-Huxley model. Left: steady state activation/inactivation curves. Right:
activation/inactivation time constants.

2.1.2 Conductance-Based models

The original Hodgkin-Huxley model previously presented, was developed using data
from the giant axon of the squid and conductance Na+ and K+ dynamics were
experimentally determined for this case.

However, the same formalism can be used to study most neurons with different con-
ductance dynamics. Neuron models based on these ideas are known as conductance-
based models. Conductance-based models can reproduce with quite accuracy the
complex behaviour of real neurons.

Each conductance is associated with a reversal potential E, a maximal conductance
ḡ, integer exponents p and q, and gating variables m and h. Each ionic current is
described as

Iion = ḡmphq(V − E) (2.7)

2.1 Single neuron models 11



Gating variables m and h are known respectively as activation and inactivation
variables and satisfy a first order differential equation of identical form

dX

dt
= X∞(V )−X

τX
(2.8)

where X = m,h represents a generic gating variable. Functions X∞(V ) and τX are
determined from experimental data for each specific neuron.

Gating variables represent the opening and closing dynamics of gating channels,
and their dynamics can also be expressed in terms of the channel opening (αX) and
closing rates (βX)

dX

dt
= αX(1−X)− βXX (2.9)

Research on conductance-based models focus on understanding how the properties
of membrane and synaptic conductances give rise to different neural responses.
When different ionic currents give rise to similar activity, degeneracy emerge. Thus,
conductace-based models have been widely used in the study of the degeneracy
problem.

An example of a conductance-based model

As an example of a single-compartment, conductance-based biophysical model, we
present the model for cells in the internal segment of the globus pallidus (GPi), [27,
30] which is used in the STN-GPe-GPi-TC network for GPi cells.

The model includes spiking producing currents sodium (INa) and potassium (IK)
currents and a leak current (IL). Each cell contains also the following types of ionic
currents: a calcium activated, voltage-independent afterhyperpolarization potassium
current (IAHP ), a high threshold calcium current (ICa) and a low threshold T-type
calcium current (IT ). These additional ionic currents, based on experimental data,
allows the model to reflect in vivo firing patterns and they are responsible of most
firing properties displayed by GPi cells.

In addition GPi cells receives synaptic current (Isyn) and applied current (Iapp). For
the moment we neglect the synaptic current (Isyn) ans focus on the single cell model.
Overall, each GPi cell is described by a set of five differential equation of the form
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C
dV

dt
= −IL − IK − INa − IT − ICa − IAHP + Iapp (2.10)

dX

dt
= ΦX

(
X∞(V )−X
τX(V )

)
, X = n, h and r (2.11)

d[Ca]
dt

= ε(−IL − IT −KCa[Ca]) (2.12)

The leak current and voltage-dependent currents are given by the Hodgkin-Huxley
formalism by

IL = ḡL(V − EL) (2.13)

IK = ḡkn
4(V − EK) (2.14)

INa = ḡkm
3
∞(V )h(V − ENa) (2.15)

IT = ḡTa∞(V )r(V − ET ) (2.16)

ICa = ḡCas
2
∞(V )(V − ECa) (2.17)

In addition the model presents a calcium-dependent current, the afterhyperpolariza-
tion potassium current (AHP) of the form

IAHP = ḡAHP (V − EAHP )
( [Ca]

[Ca] + k1

)
(2.18)

where the intracellular concentration of calcium ions (Ca2+) is given by Eq. (2.12).

Fig. (2.2) shows voltage traces for GPi neurons for different levels of applied currents.
GPi can fire rapid periodic spikes with sufficient applied current. They also display
bursts of activity when subjected to small constant hyperpolarization current.

2.1.3 Reduced models

Most conductance-based models involve a large number of dynamic variables which
make it difficult to carry out a mathematical analysis. Reduced models, in which the
number of dynamic variables has been reduced, are of mathematical interest since
powerful dynamical system tools such as phase-plane analysis can be performed.

2.1 Single neuron models 13
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Fig. 2.2.: Voltage traces for GPi cells for different levels of applied current Left: GPi
cells fire burst of spikes for small negative applied current. Right: GPi cells fire
rapid periodic spikes under positive input.

There exist several techniques that can be used to reduce high-dimensional neuron
models. For instance, when the voltage-dependent time constant for a particular
gating variable (τX) is much smaller than the rest, the gating variable can be
replaced by its stationary solution (X∞) and the dimensionality of the model is
reduced by one.

Despite of the importance of these techniques, we will merely present a couple of two-
variable models, which have been widely used across computational neuroscience
community. Moreover both models presented here, have been used in the study of
the degeneracy problem, [26, 17], what make them relevant to our work.

The Morris-Lecar model

One of them is the well-known Morris and Lecar model (ML model). Although its
simplicity, it is able to exhibit many of the properties displayed by neurons.

The ML model has three channels: a potassium channel, a leak and a calcium
channel and it is assumed that the calcium current depends instantaneously on the
voltage. The ML equations have the form

C
dV

dt
= −ḡL(V − EL)− ḡKn(V − EK)− ḡCam∞(V )(V − ECa) (2.19)

dn

dt
= n∞ − n

τn(V ) (2.20)

where

m∞(V ) = 1
2 (1 + tanh((V − V2)/V2)) (2.21)
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τn(V ) = 1
cosh((V − V3)/(2V4)) (2.22)

n∞(V ) = 1
2 (1 + tanh((V − V3)/V4)) (2.23)

Here, parameters V1, V2,V3 and V4 are parameters chosen to fit experimental data.

The Fitzhugh-Nagumo model

The second model is the Fitzhugh-Nagumo model (FHN model), [26]. In fact, we
present here a slightly different version from the original FHN model, [19, 7]. The
model is given by

dV

dt
= −hV 3 + aV 2 − w (2.24)

dw

dt
= ε(αv − λ− w) (2.25)

where variables V and w describe the voltage and the gating variable, respectively.
Furthermore, parameters h, a, α, ε > 0 while parameter λ can be any real number.

As well as the ML model, the FHN captures many of the properties of more complex
biophysical models. In contrast, unlike the ML model, the FHN model is a simpli-
fied neuron model which do not have a biophysical derivation, but shares most
mathematical properties with biophysical neuron models.

2.2 Synaptic dynamics models

In building a neuron cell network, it is necessary to determine how neurons are
coupled to each other. The main difference between electrical and chemical synapses
is that electrical synapses involve a continuous communications between neurons,
in contrast with chemical synapses, when the communication is produced when an
action potential reach the presynaptic neuron.

2.2 Synaptic dynamics models 15



2.2.1 Electrical synapses

When cells communicate each other via tight junctions between their membranes,
they are synaptically connected via electrical or gap junctions. The synaptic current
of the postsynaptic neuron due to an electrical synapse is given by

Ie = ḡe(Vpre − Vpost) (2.26)

where Vpre and Vpost are the corresponding voltages of presynaptic and postsynaptic
neurons respectively.

2.2.2 Chemical synapses

At a chemical synapses, presynaptic firing results in the release of transmitter.
Binding to receptors on the postsynaptic neuron leads to the opening of ion channels
which induces a change in the membrane conductance of the postsynaptic neuron
at the site of the synapse. Traditionally, synapses are classified as excitatory or
inhibitory, depending on whether they tend to depolarize or hyperpolarize a neuron
(enhance firing or not).

The synaptic current for the postsynaptic neuron can be written

Is = ḡss(Es − Vpost) (2.27)

where Es is the synaptic reversal potential and ḡs the maximal synaptic conductance.
The synaptic variable s is related with both the probability that transmitter is released
by the presynpatic neuron when it receives the arrival of an action potential and
the probability that a postsynaptic channel opens, given that the transmitter was
released by the presynaptic neuron.

In a simple synaptic model, it is assumed a transmitter release when an action
potential reach the presynaptic neuron. Then, the change with time of the probability
that a postsynaptic channel opens can be expressed as

ds

dt
= αs(1− s)− βss (2.28)
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where βs determines the closing rate of the channel and is usually assumed to
be constant. The opening rate, αs, however, has a higher dependence on trans-
mitter concentration. When an action potential reaches the presynaptic neuron,
the transmitter concentration rises and αs increases rapidly, causing s to increase.
Following the release of transmitter there is a rapid reduction of the transmitter
concentration.

An example of a chemical synapse

Considering the STN-GPe-GPi-TC network model and, as an example of a chemi-
cal synapses, we summarize how synaptic currents were modeled in this realistic
network.

For instance, synaptic current from a GPe cell (e) to a GPi cell (i) is given by

Ie→i = ḡe→ise(Ve − Ee→i) (2.29)

The synaptic variable se satisfies a first order differential equation of the form

dse

dt
= αe(1− se)H∞(Ve − θT )− βese (2.30)

where H∞ is a smooth approximation of the Heaviside function. Here, αe and
βe represent the rates at which the synapse turn on and turn off and θT is a volt-
age threshold for the presynaptic voltage neuron. Tab. (2.1) shows the synaptic
parameter values.

αe βe θT

1 0.1 -20
Tab. 2.1.: Synaptic parameter values.

Figure (2.3) shows the synaptic conductance as a function of time due a single
presynaptic spike on a GPe cell. We note that synaptic variable se increases when
presynaptic GPe voltage is higher than the voltage threshold θe. It starts to decrease
when the action potential terminates and voltage is lower than the voltage threshold
θT .

2.2 Synaptic dynamics models 17
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Fig. 2.3.: Synaptic conductance model in the STN-GPe-GPi-TC network. Left: single
presynaptic spike on a GPe cell. Right: conductance due to a single spike on
presynaptic GPe cell (left).

2.3 Mathematical Models for Neuronal Networks

One described single cell models and synaptic models, we describe some mathemati-
cal models for neuron networks.

Apparently, the most direct way to simulate neural network is to synaptically connect
model spiking neurons, such as conductance based models. This is how mathematical
models for neuronal networks are built in this section. However, we notice the
existence of other neural network models, such as Firing-Rate models, which are
widely used in computational neuroscience. Firing-Rate models, instead of voltage,
use as an output the firing rate, which is a measure of the number of spikes generated
per unit of time.

Despite the importance of Firing-Rate models in computational neuroscience, we
focus on neuronal network built connecting single neuron spiking models, since
mathematical networks considered in this work are inspired by these type of neural
networks.

We note that network properties depends on individual cells, synaptic connections
between cells and the network architecture. Networks architectures, such as random
or structured are possible in networks involving a large number of neurons.

In order to illustrate neural network models, we build two-neuron electrically and
chemically fully connected networks. Without loss of generality, we consider a
general two-variable neuron model to describe the behaviour of each neuron in the
network with general form
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dV

dt
= f(V,w) (2.31)

dw

dt
= g(V,w) (2.32)

where V is the membrane potential of the cell and w a channel gating variable.

2.3.1 Electrical networks

The model for a pair of mutually electrically coupled neurons is given by

dVi

dt
= fi(Vi, wi)− ḡi

j(Vi − Vj) (2.33)

dwi

dt
= gi(Vi, wi) (2.34)

where i, j = 1 or 2 and i 6= j and ḡi
j is the maximal conductance for synaptic current

from neuron i to neuron j.

2.3.2 Chemical networks

For chemical synapses, we assume synaptic variable s satisfies a first-order differen-
tial equation of the form in Eq. (2.30), previously studied.

The model for a pair of mutually chemically coupled neurons is then

dVi

dt
= fi(Vi, wi)− ḡi

ssj(Vi − Ei
s) (2.35)

dwi

dt
= gi(Vi, wi) (2.36)

dsi

dt
= αi

s(1− si)H∞(Vi − θi
T )− βi

ssi (2.37)

where i, j = 1, 2 and i 6= j.

Network models presented, correspond to the most general heterogeneous network,
in which cells have different intrinsic parameters.

2.3 Mathematical Models for Neuronal Networks 19





Previous Work on Attribute
Level Sets

3
In this section, previous work on attribute level sets on neuronal models is described.
The contents of this section are mainly based on [20, 26, 17].

3.1 Existence of attribute level sets in complex systems

Contribution in [20] focus on proving the existence of attribute level sets in complex
neuronal systems and networks, although results are more general and could be
applied to any model based on parameters meeting certain specific requirements.

The technique is mainly based on the implicit function theorem which imposes
certain conditions which need to be guaranteed. For instance, the method developed
can only applied to first-order differentiable (on variables and parameters) models.

Using the implicit functions theorem, they are able not only to prove the existence
of attribute level sets near a generic point on parameter space, but also to compute
the exact compensatory function (attribute level sets) on parameter space, using the
linear approximation also provided by the theorem. They propose an algorithm to
compute exact compensatory covariations.

Moreover the algorithm developed was applied to a biophysical conductance-based
model, consisting in two identical neurons that mutually inhibit one another. Two
attribute level sets were computed on different parameter spaces in order to illustrate
the method.

On the one hand, they considered the ḡh − ḡSynS parameter space. Here, ḡh is the
maximal conductance of a hyperpolarization-activated current (Ih) and ḡSynS the
maximal conductance of the chemical synapses current. They found level sets on
this parameter space preserving the burst period (T). Bursting is characterized by a
silent phase alternated with an active phase of rapid and spike-like oscillations. Fig.
(3.1)-Left shows an example of such an attribute level set.
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Fig. 3.1.: Example of 1-dimensional level sets on the ḡh − ḡSynS and ḡh − ḡSynS − η
parameter spaces. Left: level set preserving the burst period (T) on the ḡh −
ḡSynS parameter space. Right: level set preserving both the burst period (T) and
the intraburst spike frequency (f) on the ḡh − ḡSynS − η parameter space. Figures
taken from [20].

On the other hand, the also look for level sets on the ḡh− ḡSynS − η parameter space
preserving both the burst period (T) and the intraburst spike frequency (f). Here,
η represents a scaling factor for the inactivation time constant τh,CaS of a slowly
inactivating calcium low-threshold current ICaS . Fig. (3.1)-Right shows an example
of such an attribute level set.

Based on the implicit theorem, they also predict that if m attributes are preserved
on a given level set (computed with the algorithm proposed) in a n-dimensional
parameter space, the level set has dimension n−m.

3.2 Compensatory mechanisms for level set generation

In [26], they used two-dimensional neuron models with different level of complexity,
to study the compensatory mechanisms leading to period and duty cycle (DC) level
sets. DC is defined as the fraction of the period for which the oscillation is above
half its amplitude.

Their work focus on exploiting mathematical phase plane analysis and V -speed
diagrams to see differences between them along different points within the same
attribute level set and, in this way, understand the compensatory mechanisms leading
to the generation of attribute level sets.

As an example, Fig. (3.2)-Left shows period level sets on the λ− α parameter space
on the FHN model. In addition, Fig. (3.2)- Middle shows V− (red) and w− (green)
nullclines as well as the trajectories (blue) in the phase plane for two different points
on a fixed period level set (normal and dashed lines), and Fig. (3.2)- Right shows
the V -speed graph as a function of V for the same two points in the level set.
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Fig. 3.2.: Period level sets on the λ − α parameter space, a phase-plane plot and a
V−speed graph for the FHN model. Left: period (T) level sets on the λ − α
parameter space. Middle: an example of a phase-plane plot. Normal and dashed
lines represent two different points within the same period level set. Red lines
represents V -nullclines whereas green lines w-nullclines. Trajectories are in blue.
Right: an example of a V−speed graph as a function of voltage V . Figures taken
from [26].

3.3 Connecting cells within the same level set

In [17], the ML model and a reduced two-dimesional conductance-based model (the
Calcium/H -current oscillatory model) were used to form different homogeneous
(identical cells) and heterogeneous (non-identical cells, but within the same level
set) networks with electrical and chemical synapses. Significant differences between
electrical and chemical networks in both models were found.

Cells were connected in a pairwise manner to produce different homogeneous and
heterogeneous networks. Synaptic strength in networks was controlled by one pa-
rameters GElectSyn and GChemSyn in electrical and chemical networks respectively.

They show how electrical networks with different synaptic strength were able
to preserve the individual cell frequency. In contrast, in synaptic networks they
show either a decrease (Calcium/H -current model) or increase (ML model) in the
individual cell frequency as the chemical synaptic strength increases.

Fig. (3.3) shows the results in networks considering the Calcium/H -current
model.

Clearly, in chemical networks cells become part of a new network level set when
connected. Regarding electrical networks, they show that electrical synapses was
able to maintain the individual cell frequency, but other attributes, such as the
amplitude, were not studied. Therefore, it is not known whether or not individual
attribute level sets are preserved as well.

It is worth noting that, since different electrical synapses conductances preserve the
network frequency, they constitute network frequency level sets on the connectivity

3.3 Connecting cells within the same level set 23



Fig. 3.3.: Change in cell frequencies as per the increase in synaptic strengths. A1-A2:
electrical networks; B1-B2: chemical networks; A1-B1: homogeneous networks
(identical cells); A2-B2: heterogeneous networks (cells within the same frequency
level set). Figure taken from [17].

parameter space. However, the connectivity parameter space considered here, as
well as the network architecture, might be too simplified.

Nevertheless, this work is a good starting point to the work developed in this project
for two mainly reasons. Firstly, we ask if individual level sets are preserved when
cells are electrically connected. Secondly, we would like to study more in detail
network level sets on the connectivity parameter space in more complex networks
architectures with higher dimensional parameter spaces. We will develop these ideas
on a simplified mathematical network model.
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Methods 4
In this section, the so-called ΛΩ systems are introduced. In addition, a special class
of ΛΩ systems, the ΛΩ2 system, is presented and degeneracy is characterized on this
particular system. We also establish how ΛΩ2 systems are interconnected in order to
form ΛΩ2 networks, where the degeneracy problem will be studied.

Important concepts such as attribute level sets or total-degeneracy are also defined
in this section.

4.1 ΛΩ Systems

ΛΩ systems are simple oscillatory systems. Equations describing ΛΩ systems have
the general form

dx

dt
= Λ(r)x− Ω(r)y (4.1)

dy

dt
= Ω(r)x+ Λ(r)y (4.2)

with
r2 = x2 + y2 (4.3)

where x and y are state variables and t is time. Λ and Ω are real functions of single
variable. The system is linear only if functions Λ and Ω are constants. Otherwise,
ΛΩ systems are a class of non-linear system of ordinary differential equations.

They have been extensively used as the kinetics in the study of wave phenomena in
reaction diffusion models, [13]. These class of reaction diffusion systems have the
advantage that explicit analytic solutions can be written down. However, we use the
so-called ΛΩ systems as a class of non-trivial mathematical oscillators.

In [14], ΛΩ systems are proposed as simple models useful to study synchronization
of physiological oscillators, for example in populations of cells that generate the
heart beat or gamma and beta rhythms in the brain. They have also been used as
mathematical models for central pattern generators [18], neural networks which
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exhibit rhythmic oscillations and do not require any external input to generate
them.

It is convenient to study these systems in polar coordinates in the state space. A
change of coordinates, from Cartesian to Polar

x = r cos(θ) and y = r sin(θ) (4.4)

transforms system (4.1)-(4.2) into

dr

dt
= rΛ(r) (4.5)

dθ

dt
= Ω(r) (4.6)

This form allows for the computation of the redius of the circular limit circle(s) as
the solution(s) of

Λ(r̄) = 0 (4.7)

We notice that a limit circle of radius r̄ is stable if and only if Λ(r̄) < 0. More stability
details depend on functions Λ(r) and Ω(r).

4.1.1 ΛΩ2 Systems

ΛΩ systems of order two (ΛΩ2) correspond to the following quadratic choices for
Λ(r) and Ω(r)

Λ(r) = λ− br2 and Ω(r) = ω + ar2 (4.8)

These functions belong to a specific class of Λ and Ω functions introduced in [4, 8],
where they considered arbitrary power of the radius and performed an exhaustive
mathematical and numerical analysis of these ΛΩ type oscillatory reaction diffusion
equations.

Therefore, ΛΩ systems of order two (ΛΩ2), are given by Eqs. (4.1-4.2), when
functions Λ and Ω take the form in Eq. (4.8).
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ΛΩ2 systems have a set of four parameters: λ, b, ω and a. As we study the degeneracy
problem on networks composed by units of ΛΩ2 systems, we will refer to these
parameters as the intrinsic parameters, in order to distinguish between connectivity
parameters of the network and parameters from each ΛΩ2 system in the network.

ΛΩ2 systems have a single limit circle for

r̄ =

√
λ

b
(4.9)

if λ/b > 0 which is stable if and only if b > 0. Therefore, only when parameters
λ and b are both positive the system show sustained oscillations. Moreover, as
parameter λ becomes positive, the stable fixed point (x̄, ȳ) becomes unstable and
the system undergoes a supercritical Hopf bifurcation.

Fig. (4.1) shows the nullclines and the trajectory for a representative solution to the
ΛΩ2 system. It is also shown the sinusoidal-like solutions of the state variables as a
function of time.
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Fig. 4.1.: Dynamics of the ΛΩ2 systems. Left: traces (curves of x and y as a function of
t). Right: phase-plane diagram. The x- and y- nullclines are the set of points in
the x-y plane that make dx/dt = 0 and dy/dt = 0 respectively. Parameter values:
λ = 1, b = 1, a = 1 and ω = 1.

Since we are interested in ΛΩ2 systems as mathematical oscillators we focus on the
case when ΛΩ2 systems show a stable limit circle, towards which solutions converge
in the limit of t → ∞. We characterize the stationary oscillatory solutions by two
attributes of the oscillatory pattern: the amplitude and frequency.

Simple theoretical oscillatory models, such as ΛΩ2 systems, are useful to study
qualitative aspects of real physiological systems, from which they tend to be realistic
simplifications. In this work, we consider ΛΩ2 systems as simplified models that
simulate the behaviour of a neuronal cell. However, these ΛΩ2 models are too
oversimplified to accurately represent a realistic neuron. Nonetheless, we shall
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consider the ΛΩ2 system as a toy model which would represent the behaviour of an
hypothetical neuron.

In this respect, we consider variable x in Eq. (4.4) as the corresponding variable
representing the voltage of an hypothetical cell modelled by a ΛΩ2 system. Further-
more, all attributes considered will characterized the oscillatory pattern of the cell
voltage, i.e., variable x in the ΛΩ2 system.

4.2 ΛΩ2 Networks

The general form of the linear connectivity networks we consider is

dxk

dt
= Λk(rk)xk − Ωk(rk)yk −

N∑
j=1

αk,jxj (4.10)

dyk

dt
= Ωk(rk)xk + Λk(rk)yk (4.11)

where

r2
k = x2

k + y2
k (4.12)

and A = {αk,j} is the connectivity matrix. We shall call αk,k self-connectivity
parameters and αk,j (k 6= j) cross-connectivity parameters.

ΛΩ2 networks and then given by Eqs. (4.10)-(4.11) taking

Λk(rk) = λk − bkr
2
k and Ωk(rk) = ωk + akr

2
k (4.13)

In this work, we consider ΛΩ2 networks composed by one and two units of ΛΩ2

systems. As we consider that ΛΩ2 systems represent the behaviour of an hypothetical
neuronal cell, we shall refer to these networks as the self-connected cell and the
two-cell network. The goal of the project is to characterize degeneracy in these two
simple networks.

Based on the intrinsic parameters of the cells, we distinguish three different types
of networks: homogeneous networks (cells are identical), type-I heterogeneous
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networks (cells belong to the same individual amplitude and frequency LS) and type-
II heterogeneous networks (cells belong to different frequency and/or amplitude
LS).

4.3 Degeneracy and attribute level sets

Degeneracy, in a model which involve parameters, refers to the situation where mul-
tiple sets of parameter values can produce the same observable output or attribute.
In such a model, attribute level sets are defined as the set of points on parameter
space for which a given attribute is constant.

In this work, we compute several attribute level sets in ΛΩ2 networks. We fo-
cus our analysis on 1 and 2-dimensional attribute level sets, embedded in 2,3 or
4-dimensional parameter spaces. We show them parametrized by one or two pa-
rameters, respectively. As in [20], we shall call these parameters the compensating
parameters.

For instance, a 2-dimensional attribute level set on a 4-dimensional parameter space
(x1, x2, y1, y2) would be defined by two functions of the form

y1 = f1(x1, x2)

y2 = f2(x1, x2)
(4.14)

being x1, x2 the compensating parameters and y1, y2 the compensated parame-
ters. Furthermore, we will refer to the parametrization functions f1, f2 as the
compensatory functions.

4.3.1 Degeneracy in ΛΩ2 Systems

Degeneracy in ΛΩ2 systems is easily characterized. Amplitude and frequency level
sets can be computed analytically. We ignore the transient of solutions and charac-
terize degeneracy for stationary oscillatory solutions.

From Eq. (4.9) amplitude level sets are the curves in the λ − b parameter space
satisfying
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λ

b
= Ka (4.15)

where Ka is a constant. Similarly, from Eqs. (4.6) and (4.8) frequency level sets are
the hypersurfaces in the λ− ω − a− b parameter space satisfying

ω + a
λ

b
= Kf (4.16)

where Kf is a constant. On a given amplitude level set, the frequency level sets are
the curves in ω − a parameter space satisfying

ω + aKa = Kf (4.17)

Therefore, for all combinations of parameter values satisfying Eqs. (4.15) and (4.17)
the system has the same amplitude and frequency. Moreover, along these level sets
the oscillatory patterns are identical.

A plausible method to disambiguate degeneracy in ΛΩ2 Systems

Despite degeneracy in amplitude and frequency for stationary solutions, Eqs. (4.15)-
(4.16), the transient solution is different among degenerated stationary solutions.
These differences can be used as a method to decode degeneracy in ΛΩ2 systems.

As an example, we add a perturbation to the cell voltage, p(t), of the form

p(t) = K (H(t− ton)−H(t− toff )) (4.18)

which corresponds to a rectangular signal of amplitude K beginning at instant ton

and ending at instant toff . The perturbed ΛΩ2 system has the form

dx

dt
= λx− ωy − (bx+ ay)(x2 + y2) + p(t) (4.19)

dy

dt
= ωx+ λy + (ax− by)(x2 + y2) (4.20)

Perturbations are added to amplitude degenerated ΛΩ2 system in which parameters
λ and b might be different, but all systems do belong to the same amplitude level
set, Eq. (4.15).
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We find a correspondence between the parameter λ and the recovery time (required
time to reach stationary oscillations in the system after a perturbation). Fig. (4.2)
shows the recovery time as a functions of parameter λ for different systems belonging
to the same amplitude level set (Ka = 1). It is also shown the perturbed oscillatory
solutions in the phase plane.
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Fig. 4.2.: Perturbed ΛΩ2 system within the same amplitude level set and recovery
times. Left: recovery times for different values of parameter λ where Ka = 1.
Right: perturbation shown on the x− y parameter space for different values of
parameter λ where Ka = 1 (b = λ). Parameter values: a = 1 and ω = 1.

4.3.2 Total-degeneracy

Throughout this work two attributes are considered to characterize oscillatory
solutions: the amplitude and frequency. Thus, we say a level set is total-degenerated
when both the amplitude and frequency are constant. If two or more systems (or
networks) belong to the same total-degenerated level set, we say that systems (or
networks) are total-degenerated.

As an example, total-degenerated level sets in ΛΩ2 systems preserving both the
amplitude and frequency do exist and its analytical expression is given by Eqs.
(4.15) and (4.17).

4.4 Numerical Simulations

All simulations have been performed and coded in MATLAB (Math Works, MA).
The numerical simulations were computed by using the modified Euler method
(Runge-Kutta, order two), with time steps within the ∆t = 0.01 and ∆t = 0.001
range.
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Level Sets Preservation in
ΛΩ2 Networks

5
In this section we study whether and under what condition the attribute level sets
(LSs) for individual neurons are preserved in ΛΩ2 networks. Two ΛΩ2 networks
with different degree of complexity are considered: the self-connected cell and the
two-cell network.

A set of statements, aimed at capturing the main results, are presented in each
section.

5.1 The self-connected cell

The set of equations describing the self-connected cell is given by

dx

dt
= λx− ωy − (bx+ ay)(x2 + y2) + αx (5.1)

dy

dt
= ωx+ λy + (ax− by)(x2 + y2) (5.2)

where λ, b, ω and a are the intrinsic parameters of the cell and α is the self-
connectivity parameter.

A necessary condition for the preservation of individual LSs in ΛΩ2 networks is
that the connectivity matrix has to be singular (see more details in Appendix A).
Therefore, LSs in the self-connected cell will not be preserved.

Statement. Attribute level sets are not preserved in the self-connected cell.

Fig. (5.1) shows the effect of self-inhibition (α < 0) and self-excitation (α > 0)
on different cells belonging to the same individual amplitude and frequency LS
for representative parameter values. It is shown how amplitude and frequency
are not constant along the individual LS. In particular, the effect of self-inhibition
is a decrease in amplitude and frequency, while self-excitation increases both the
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amplitude and frequency. In both cases, the effect is greater specially for small
values of parameter λ.
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Fig. 5.1.: Individual attribute level sets are not preserved in the self-connected cell.
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amplitude envelope diagram as a function of λ for representative values of
self-connectivity parameter α. Right: frequency diagram as a function of λ for
representative values of self-connectivity parameter α. Parameter values: a = 1
and ω = 1.

5.2 The Two-cell Network

The set of equations describing the self-connected cell are given by

dx1
dt

= λ1x1 − ω1y1 − (b1x1 + a1y1)(x2
1 + y2

1) + α11x1 + α12x2 (5.3)

dy1
dt

= ω1x1 + λ1y1 + (a1x1 − b1y1)(x2
1 + y2

1) (5.4)

dx2
dt

= λ2x2 − ω2y2 − (b2x2 + a2y2)(x2
2 + y2

2) + α21x1 + α22x2 (5.5)

dy2
dt

= ω2x2 + λ2y2 + (a2x2 − b2y2)(x2
2 + y2

2) (5.6)

where λi, bi, ωi and ai (i = 1, 2) are the intrinsic parameters of the cells and
{αij}i,j=1,2 is the connectivity matrix whose coefficients are the connectivity param-
eters.

We show that there exist conditions for individual LSs preservation in the two-cell
network. In particular there exist 2-dimensional manifolds on connectivity parameter
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space which preserve individual LSs, provided individual cells belong to the same
frequency LS.

Furthermore, analytical expression for these manifolds can be written down. We
proceed as follows. Firstly, necessary and sufficient conditions for the existence of an
individual limit circle in each cell are found. Under these conditions, each cell shows
an individual limit circle for 2-dimensional manifolds on connectivity parameter
space.

We notice that the existence of an individual limit circle in each cell is not sufficient
for LSs preservation, since limit circles should be stable in order to show sustained
oscillations. Then, we obtain (computationally) restricted 2-dimensional manifolds
which preserve individual LSs. (see more details in Appendix A).

As a result, connectivity matrices preserving individual LSs can be found both
in homogeneous and heterogeneous networks. In the following we summarize
conditions for LSs preservation.

Statement. Individual cells must belong to the same frequency level set (Kf ) in order
to preserve attribute level sets. Therefore, heterogeneous networks in which cells belong
to different frequency level sets do not preserve individual attribute level sets.

Taking into account the analytical expressions of amplitude and frequency LSs
in ΛΩ2 systems, in the most general situation in which cells belong to different
amplitude LSs (Ka1 and Ka2), intrinsic parameters ω1, ω2, a1 and a2 must verify the
condition

ω1 + a1Ka1 = ω2 + a2Ka2 (5.7)

in order to belong to the same individual frequency LS.

Statement. Homogeneous and heterogeneous (cells belong to different individual
amplitude level sets) two-cell networks preserve individual attribute level sets on 2-
dimensional manifolds on connectivity parameter space.

We have found that there are two types of networks which preserve individual LSs,
namely synchronized and non-synchronized networks. In synchronized networks,
cells oscillate in phase (∆ϕ = 0), whereas in non-synchronized networks, cells
oscillate in antiphase (∆ϕ = ±π). Whether the network which preserve individual
LSs is synchronized or not does depend on cross-connectivity parameters.
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The following statement summarizes the possible networks according to the in-
hibitory (negative value) or excitatory (positive value) character of connectivity
parameters.

Statement. Mutually excitatory and inhibitory cross-connectivity under self-inhibition
preserve level sets in the two-cell network. Mutually excitatory cross-connectivity leads
to synchronized networks whereas mutually inhibitory cross-connectivity leads to non-
synchronized networks.

In order to compute closed matrix forms preserving individual LSs, we define the
additional parameter

γ = r̄1
r̄2

(5.8)

where

r̄1 =
√
λ1
b1

and r̄2 =
√
λ2
b2

(5.9)

are the amplitude value of cell-1 and cell-2 respectively. We note that parameter γ
has value one when cells are either identical (homogeneous networks) or belong
to the same individual amplitude (and also frequency) LSs (type-I heterogeneous
networks). In contrast, it has a different values when cells belong to different
individual amplitude LSs (type-II heterogeneous networks).

5.2.1 Non-Synchronized Networks Preserving Level Sets

Statement. Connectivity matrices with the general form

Cnon-syn =
(
−γ−1α −α
−β −γβ

)
, α, β ≥ 0 (5.10)

do preserve attribute LSs both in type-I heterogeneous (cells belong to the same am-
plitude and frequency LS) and type-II heterogeneous (cells belong to the different
amplitude LSs) provided cells belong to the same frequency LS. Furthermore networks
are non-synchronized.
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Fig. (5.2) shows voltage traces in a non-synchronized network preserving individual
LSs. It is also shown how individual LSs of cell-1 are preserved in the network.
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Fig. 5.2.: Non-Synchronized network preserving individual attribute level sets. Left:
voltage traces x1 and x2 before and after the connection. Vertical Red line
indicates the time at which cells form the network. Middle: amplitude envelope
diagram for values (λ1, b1) belonging to the same individual amplitude level set
(Ka,1 = 1). Left: frequency diagram for values (λ1, b1) belonging to the same
individual amplitude level set (Ka,1 = 1). Parameter values: a1 = 1, ω1 = 1,
a2 = 1/4, ω2 = 1, γ = 1/2, α = 1 and β = 1.

5.2.2 Synchronized Networks Preserving Level Sets

Statement. Connectivity matrices with the general form

Csyn =
(
−γ−1α α

β −γβ

)
, α, β ≥ 0 (5.11)

do preserve attribute level set both in type-I heterogeneous (cells belong to the same
amplitude and frequency LS) and type-II heterogeneous (cells belong to the different
amplitude LSs) provided cells belong to the same frequency level set . Furthermore
networks are synchronized.

Fig. (5.3) shows voltage traces in a synchronized network preserving individual
attributes LSs. It is also shown how individual LSs of cell-1 are preserved in the
network.

Gap-Junctions: Synchronized Electrical Network Preserving Level Sets

We highlight synchronized type-I heterogeneous networks, which preserve individual
LSs. In this case, matrices preserving individual LSs has the general form
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Fig. 5.3.: Synchronized network preserving individual attribute level sets. Left: volt-
age traces x1 and x2 before and after the connection. Vertical Red line indicates
the time at which cells form the network. Middle: amplitude envelope diagram
for values (λ1, b1) belonging to the same individual amplitude level set (Ka,1 = 1).
Left: frequency diagram for values (λ1, b1) belonging to the same individual am-
plitude level set (Ka,1 = 1). Parameter values: a1 = 1, ω1 = 1, a2 = 1/4, ω2 = 1,
γ = 1/2, α = 1 and β = 1.

Cgap-juntion =
(
−α α

β −β

)
, α, β ≥ 0 (5.12)

This kind of connectivity would corresponds to the case where cells are coupled
through electrical synapses or gap junctions. In realistic neuron network models,
electrical synapses would produce a synaptic current proportional to the difference
between the pre- and post-synpatic membrane potentials, [5].

Statement. Gap juntions preserve level sets in type-I heterogeneous networks where
cells belong to the same amplitude and frequency level set. However, gap-junctions do
not preserve individual level sets in type-II heterogeneous networks.
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Newly Emerged Network
Level Sets

6
In this section we study the newly emerged network LSs when individual LSs are
not preserved in the network.

In chapter 5 we focus on conditions for individual LSs preservation in the self-
connected cell and the two-cell network. When those conditions are not guaranteed,
new network LSs emerge. The goal of this section is to characterize them for different
types of networks: homogeneous networks (identical cells), type-I heterogeneous
networks (cells belong to the same amplitude and frequency LS) and type-II hetero-
geneous networks (cells belong to different frequency and/or amplitude LSs).

We begin characterizing the new network LSs on the connectivity parameter space
focusing on connectivity parameter dependencies for the preservation of network
attributes. We also investigate the intrinsic parameter space of a single cell and
combined parameter spaces involving both connectivity and intrinsic parameters.

6.1 The self-connected cell

As it was shown in chapter 5, self-connected cells do not preserve individual LSs.
Therefore all network LSs found will be characteristic of the self-connected cell.

Firstly, we study separately the λ− b and ω− a parameter spaces for different values
of self-connectivity parameter α. Afterwards, we characterize total-generated LSs on
the whole intrinsic parameter space and describe parameter dependencies needed
to maintain network attributes constant on parameter space.

6.1.1 The λ− α parameter space

Individual amplitude LSs are defined in the λ − b parameter space and they are
total-degenerated since the frequency is also constant along them. To begin with, we
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consider the λ− b parameter space to compare LSs on this parameter space between
the self-connected cell and the individual cell.

Statement. Amplitude level sets on the λ− b parameter space in the self-connected cell
are not total-degenerated. The network frequency is not preserved along amplitude level
sets on the λ− b parameter space.

Fig. (6.1) shows a representative amplitude LS (ANet = 1) on the λ−α−b parameter
space. It is also shown the network frequency for each point on the amplitude LS.
In particular, when the connectivity parameter α is fixed, it is shown the change in
frequency along the amplitude LSs (ANet = 1) on the λ− b parameter space.

Fig. 6.1.: Network frequency is not constant on amplitude LSs on the λ−α− b param-
eter space. Left: amplitude LS (ANet = 1) on the λ − α − b parameter space.
Right: network frequency for each point on the amplitude LS. Parameter values:
a = 1 and ω = 1.

We note that 1-dimensional total-degenerated LSs could be found in the λ− α− b
parameter space following trajectories within the amplitude LS which preserve the
network frequency.

6.1.2 The ω − a parameter space

If the ω − a parameter space is considered, similar results are obtained. More
specifically, individual total-degenerated LSs on the ω − a parameter space are no
longer total-degenerated in the self-connected cell due to the fact that frequency LSs
do not preserve the network amplitude.

Statement. Frequency level sets on the ω− a parameter space in the self-connected cell
are not total-degenerated. The network amplitude is not preserved along frequency level
sets on the ω − a parameter space.
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Fig. (6.2) shows a representative frequency LS (fNet = π−1) on the ω − α − a

parameter space. It is also shown the network amplitude for each point on the
amplitude LS.

Fig. 6.2.: Network amplitude is not constant on frequency LSs on the ω−α−a param-
eter space. Left: frequency LS (ANet = π−1) on the ω − α− a parameter space.
Right: network amplitude for each point on the frequency LS. Parameter values:
λ = 1 and b = 1.

We note that if the self-connectivity parameter α is fixed, amplitude does not remain
constant on frequency LSs in the ω − a parameter space. Although it is indeed not
constant, the variation in the network amplitude is quite small (not easily deduced
from Fig. (6.2)-Right). As a consequence, the network amplitude does depend on
parameters ω and a in the self-connected cell, which is a new feature characterizing
self-connected cells.

Furthermore, 1-dimensional total-degenerated LSs could be found in the ω − α− a
parameter space following trajectories within the frequency LS which preserve the
network amplitude.

As a global picture, Fig. (6.3) shows amplitude and frequency LSs in the form of
colored heat graphs, where each point represents a single self-connected cell with
a specific combination of parameters λ and b (top) and ω and a (bottom) whose
network amplitude (left) and frequency (right) corresponds with the value indicated
on the color bar. LSs corresponds to the curves joining points with the same attribute
value.

6.1.3 The whole intrinsic parameter space

Once characterized amplitude and frequency LSs on the λ− b and ω − a parameter
spaces separately, we extent the parameter space in order to characterize total-
degenerated LSs on the whole intrinsic parameter space.
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Fig. 6.3.: Amplitude and frequency LSs on the λ− b and ω−a parameter spaces in the
self-connected cell. Top: amplitude (left) and frequency (right) LSs on the λ− b
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for which there are not sustained oscillations. Parameter values. Top: a = 1,
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We found 2-dimensional manifolds on the intrinsic parameter space preserving the
network amplitude and frequency.

Statement. The self-connected cell show 2-dimensional total-degenerated level sets on
the intrinsic parameter space (the a− b− λ− ω parameter space).

Computationally, we have found that in order to compute most general total-
degenerated LSs, compensating parameters must be chosen appropriately. One
of them must be either parameter λ or b, whereas the other must be either parameter
ω or a. This ensures that the most general total-degenerated LSs can be found.

Fig. (6.4) shows an example of a total-degenerated LS (ANet = 1 and fNet = π−1)
on the a− b− λ− ω parameter space in the self-connected cell for representative
parameter values. In this case, we choose compensating parameters to be parameters
a and b. It shows in the form of colored heat graphs, compensated parameters λ
(left) and ω (right) for each pair of compensating parameters a and b. Each point on
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the 2-dimensional manifold represents a self-connected cell with the same network
amplitude (ANet = 1) and frequency (fNet = π−1).
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Fig. 6.4.: Total-degenerated LS on the whole intrinsic parameter space in the self-
connected cell. The cell oscillates with amplitude ANet = 1 and frequency
fNet = π−1. For each pair of parameters a and b, there are the values of parameters
λ (Left) and ω (Right), such as the amplitude and the frequency of the self-
connected cell is preserved. Parameter values: α = 2.

Although individual total-degenerated LSs are also 2-dimensional manifolds on
parameter space, there are some differences regarding compensatory functions,
between total-degenerated LSs in the individual and the self-connected cell.

On the one hand, compensatory functions for total-degenerated LSs in the individual
cell only depend on one compensating parameter. More specifically, parameter b
compensates parameter λ, while parameter a compensates parameter ω.

On the other hand, compensatory functions in the self-connected cell depend on both
compensating parameters, and therefore, each parameter (λ and ω) is compensated
by both compensating parameters (a and b).

In particular, Fig. (6.4) shows the dependence on compensating parameters of
compensatory functions on a representative total-degenerated LS (ANet = 1 and
fNet = π−1). In order to gain insight into these compensatory dependencies between
intrinsic parameters, we fix one compensating parameter and compute exact total-
degenerated LS on the remaining 3-dimensional parameter space.

Fig. (6.5)-Left shows a representative total-degenerated LS on the a−λ−ω parameter
space in which compensating parameter b has been fixed. Conversely, Fig. (6.5)-
Right shows a representative total-degenerated LS on the b− λ− ω parameter space
in which compensating parameter a has been fixed.

We see a monotonic and almost linear compensating dependencies between parame-
ters a−ω and b−λ in each case, which is clearly shown on the projection of each LS
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Fig. 6.5.: Total-degenerated levels set on 3-dimensional intrinsic parameter spaces.
Left: compensating parameter b is fixed and the 1-dimensional total-degenerated
LS on the a − λ − ω parameter space is shown. Parameter values: b = 1 and
α = 2. Right: Compensating parameter a is fixed and the 1-dimensional total-
degenerated LS a − λ − ω parameter space is shown. Parameter values: a = 1
and α = 2. Dark blue: 1-dimensional total-degenerated LSs. Light blue: LSs
projections into ω − a (Left) and λ− b (Right) parameter spaces.

onto the a− ω or b− λ parameter space (light blue lines in Fig. (6.5)). We note that
the same type of compensating dependencies is observed in the individual cell.

In addition, parameters λ (Fig. (6.5)-Left) and ω (Fig. (6.5)-Right) must be compen-
sated in order to preserve network attributes. However, the strength of these new
compensatory dependencies are weaker, since these additional compensated param-
eters are slightly changed, in comparison with parameters ω and λ, respectively.

The main reason of these parameter dependencies is the fact that the network
frequency is mainly determined by parameters ω and a and the network amplitude
by parameters λ and b. Therefore, although the self connection introduces new
dependencies on parameters spaces λ − b and ω − a, these are weaker than the
original ones.

6.2 Homogeneous Two-Cell Networks

In homogeneous two-cell networks, cells are identical and, therefore, they have
same intrinsic parameters

λ1 = λ2(= λ), b1 = b2(= b), a1 = a2(= a) and ω1 = ω2(= ω) (6.1)
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6.2.1 Symmetrical Networks

The connectivity parameter space

In first place, we characterize amplitude and frequency LSs on the 4-dimensional
connectivity parameter space in symmetrical homogeneous networks, where cells
have the same network amplitude (ANet) and frequency (fNet) value.

Fig. (6.6) shows an example of an amplitude LS (ANet = 1.5) on the connectivity
parameter space for representative parameter values. It is also shown the network
frequency (fNet) for each point on the amplitude LS.
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Fig. 6.6.: Amplitude LS on the connectivity parameter space in symmetrical homoge-
neous two-cell networks. Cell-1 and cell-2 oscillate with amplitude value 1.5.
Left and middle: amplitude LS. For each pair of cross-connectivity parameters,
there are the values of self-connectivity parameters, α11 (Left) and α22 (Middle),
such as the network amplitude is preserved. Right: frequency for each point of
the amplitude LS. Parameter values: λ = 1, b = 1, a = 1, ω = 1.

The next statement summarizes the main features of amplitude and frequency LSs on
the connectivity parameter space in symmetrical homogeneous two-cell networks.

Statement. Symmetrical homogeneous networks show 2-dimensional amplitude level
sets on the connectivity parameter space. Furthermore, the network frequency is constant
throughout amplitude level sets on the connectivity parameter space. Consequently,
symmetrical homogeneous networks show 2-dimensional total-degenerated level sets on
the connectivity parameter space.

Symmetrical homogeneous networks are of interest because total-degenerated LSs
on the connectivity parameter space can be easily characterized. For a given pair of
cross-connectivity parameter α12 and α21, compensated self-connectivity parameters
α11 and α22 can be found in order to preserve a given network amplitude.

Fig (6.7) shows how breaking the condition for LSs preservation in synchronized
homogeneous networks, Eq. (5.11), affects individual amplitude and frequency
LSs. Here, cross-connectivity parameter are fixed and self-connectivity parameters
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are perturbed from it LSs preserving value. Both self-connectivity parameters are
perturbed the same amount so as to guarantee a symmetrical network. Top plots
show the effect of mutually higher self-connectivity, whereas bottom plots shows the
effect of mutually lower self-connectivity.
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Fig. 6.7.: Effect of mutually higher and lower self-connectivity (compared to the self-
connectivity preserving individual LSs) on individual amplitude LSs in syn-
chronized homogeneous networks. Top: mutually higher self-connectivity.
Parameter values: a = 1, ω = 1, α12 = 1, α21 = 1, α11 = 0.5 and α22 = 0.5
(Perturbation: +1.5). Bottom: mutually lower self-connectivity. Parameter values:
a = 1, ω = 1, α12 = 1, α21 = 1, α11 = −1.75 and α22 = −1.75 (Perturbation
−0.75). Left: amplitude envelope diagram for values (λ, b) belonging to the same
individual amplitude LS. Right: frequency diagram for values (λ, b) belonging
to the same individual amplitude LS. LSP refers to the LS preserving network in
which connectivity parameters preserve individual LSs. NLSP refers to perturbed
networks in which self-connectivity parameters have been modified.

In particular, we see that a mutual increase in self-connectivity leads to higher am-
plitude symmetrical networks, while a mutual decrease in self-connectivity produces
symmetrical networks with lower amplitude values.

More specifically, for a given network amplitude value (ANet), the network amplitude
LS on connectivity parameter space is given by
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CANet =
(
−α12 + ε(ANet) α12

α21 −α21 + ε(ANet)

)
, α12, α21 ≥ 0 or α12, α21 ≤ 0

(6.2)

where ε(ANet) is a constant dependent on the network amplitude ANet. Interest-
ingly, the compensatory function associated with each self-connectivity parameter
only depends on its corresponding cross-connectivity parameter. In other words,
cross-connectivity parameter α12 only compensates self-connectivity parameter α11,
while cross-connectivity parameter α21 only compensates self-connectivity parameter
α22.

As it is expected, when the network amplitude equals the individual cell amplitude
(ANet = AInd), the network amplitude LS corresponds to the LS on the connectivity
parameter space which preserve individual LSs, Eq. (5.11).

Changing intrinsic parameters

Since the network frequency (fNet) is constant throughout amplitude LSs on the
connectivity parameter space, there is a correspondence between a given network
amplitude LS on connectivity parameter space and its frequency. If for a given net-
work amplitude LS on connectivity parameter space, a different network frequency
is required, intrinsic parameters must be changed. However, the network amplitude
LS on connectivity parameter space might change. In other words, self-connectivity
parameters might be differently compensated for a given pair of cross-connectivity
parameters.

In Fig. (6.8), we show the network frequency on the amplitude LS (ANet = 1.5) on
connectivity parameter space as a function of parameters λ and b. We also compare
the network frequency (fNet) with the individual cell frequency (fInd).

Curves preserving the frequency in Fig. (6.8)-Left represent 1-dimensional total-
degenerated LSs on the λ− b− α11 − α22 parameter space. As an exception, black
line in (6.8)-Middle is the only curve in which the value of self-connectivity param-
eters α11 and α22 does not change (same amplitude LS on connectivity parameter
space). It corresponds to the case where individual LS are preserved in the two-cell
network.
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Fig. 6.8.: Intrinsic parameters change the value of the network frequency preserved
on a given amplitude LS on connectivity parameter space. Both cells oscillate
with amplitude value 1.5 (ANet = 1.5). Left: network frequency on the amplitude
LS (ANet = 1.5) on connectivity parameter space as a function of parameters
λ and b. Middle: the difference between the individual cell frequency and the
network frequency (from left). The blank line represents the case in which the
individual LS (Ka = 2.25 and Kf = 3.25) is preserved. Right: regions where the
network frequency is higher or lower than the individual cell frequency (from
Middle). Parameter values: a = 1, ω = 1, α12 = 1 and α21 = 1.

6.2.2 Non-symmetrical Networks

In non-symmetrical homogeneous networks, the amplitude value of each cell on
a given amplitude LS is different. Fig. (6.9) shows an example of an amplitude
LS (A1 = 1.5 and A2 = 1.25) in a non-symmetrical homogeneous networks for
representative parameter values. It is also shown the network frequency for each
point in the amplitude LS.
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Fig. 6.9.: Amplitude LS on the connectivity parameter space in non-symmetrical ho-
mogeneous two-cell networks. Cell-1 oscillates with amplitude value 1.5, while
cell-2 oscillates with amplitude value 1.25. Left and middle: Amplitude LS. For
each pair of cross-connectivity parameters, there are the values of self-connectivity
parameters, α11 (Left) and α22 (Middle), such as both the amplitude value of
each cell in the network is preserved. Right: Frequency for each point of the
amplitude LS. Parameter values: λ = 1, b = 1, a = 1, ω = 1.

The next statement summarizes the main properties of amplitude LSs on the connec-
tivity parameter space in non-symmetrical homogeneous networks.

Statement. Non-symmetrical homogeneous networks show 2-dimensional amplitude
level sets on the connectivity parameter space. However, the network frequency is not
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constant throughout amplitude level sets on the connectivity parameter space. Conse-
quently, non-symmetrical homogeneous networks show 1-dimensional total-degenerated
level sets on the connectivity parameter space.

The fact that the network frequency is not preserve throughout amplitude LSs on
the connectivity parameter in non-symmetrical homogeneous networks is the main
difference between non-symmetrical and symmetrical homogeneous networks.

6.3 Type-I Heterogeneous Two-cell Networks

We consider type-I heterogeneous networks in which cells belong to the same
individual amplitude and frequency LS. Contrary to homogeneous networks, we
found that symmetrical and non-symmetrical type-I heterogeneous networks show
similar properties. For the sake of simplicity, we illustrate them in a symmetrical
type-I heterogeneous network.

6.3.1 Connectivity parameter space

Fig. (6.10) shows how breaking the condition for LSs preservation in type-I hetero-
geneous networks, Eq. (5.11), affects individual amplitude and frequency LSs. Here,
cross-connectivity parameter are fixed and self-connectivity parameters are per-
turbed from it LSs preserving value. Both self-connectivity parameters are perturbed
the same amount so as to see the differences between symmetrical homogeneous and
symmetrical type-I heterogeneous networks. Top plots show the effect of mutually
higher self-connectivity, whereas bottom plots shows the effect of mutually lower
self-connectivity.

Contrary to homogeneous networks, the amplitude value of each cell in the network
is different. In Fig. (6.10), the only case in which amplitude values coincide is when
cells are identical, which corresponds to the homogeneous network case.

Fig. (6.11) shows an example of an amplitude LS (ANet = 1.5) on the connectivity
parameter space in a type-I heterogeneous network (Ka = 1).

The next statement summarizes the main properties of network LSs on the connec-
tivity parameter space in type-I heterogeneous network. We note that LSs properties
in type-I heterogeneous network are the same as LSs properties in non-symmetrical
homogeneous networks.
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Fig. 6.10.: Effect of mutually higher and lower self-connectivity (compared to the
self-connectivity preserving individual LSs) on individual amplitude LSs
in synchronized type-I heterogeneous networks. Top: mutually higher self-
connectivity. Parameter values:λ2 = 1, b2 = 1, a = 1, ω = 1, α12 = 1, α21 = 1,
α11 = 0.5 and α22 = 0.5 (Perturbation: +1.5). Bottom: mutually lower self-
connectivity. Parameter values: λ2 = 1, b2 = 1, a = 1, ω = 1, α12 = 1, α21 = 1,
α11 = −1.75 and α22 = −1.75 (Perturbation −0.75). Left: amplitude enve-
lope diagram for values (λ1, b1) belonging to the same individual amplitude LS.
Right: frequency diagram for values (λ1, b1) belonging to the same individual
amplitude LS. LSP refers to the LS preserving network in which connectivity
parameters preserve individual LSs. NLSP refers to perturbed networks in which
self-connectivity parameters have been modified.

Statement. Type-I heterogeneous networks show 2-dimensional amplitude level sets
on the connectivity parameter space. However, the network frequency is not constant
throughout amplitude level sets on the connectivity parameter space. Consequently,
type-I heterogeneous networks show 1-dimensional total-degenerated level sets on the
connectivity parameter space.

The representative amplitude LS on the connectivity parameter space shown in Fig.
(6.11) is parametrized by cross-connectivity parameters. We focus on the compen-
satory relations between compensating parameters α12 and α21 and compensated
parameters α11 and α22.
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Fig. 6.11.: Amplitude LS on the connectivity parameter space in symmetrical type-I
heterogeneous two-cell network. Both cells oscillate with amplitude value 1.5.
Left and middle: amplitude LS. For each pair of cross-connectivity parameters,
there are the values of self-connectivity parameters, α11 (Left) and α22 (Middle),
such as the amplitude value of each cell in the network is preserved. Right:
frequency for each point on the amplitude LS. Parameter values: λ1 = 1, b1 = 1,
λ2 = 3, b2 = 3, a1 = 1, ω1 = 1, a2 = 1 and ω2 = 1.

Fig. (6.12) shows how connectivity parameter are compensated when cross-connectivity
parameters are changed in order to preserve the network attributes. Further-
more, voltage traces are shown for two different point on the 1-dimensional total-
degenerated LS.
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Fig. 6.12.: Total-degenerated LS on the connectivity parameter space. Network ampli-
tude, ANet = 1.5 and network frequency, fNet = 0.37. Left: total-degenerated LS
parametrized by either cross-connectivity parameter. Black line represents
the projection of compensated self-connectivity parameters onto the cross-
connectivity parameter space. Middle: voltage traces at the point of the LS
with α12 = 0.7. Left: voltage traces at the point of the LS with α12 = 2.2.
Parameter values: λ1 = 1, b1 = 1, λ2 = 3, b2 = 3, a1 = 1, ω1 = 1, a2 = 1 and
ω2 = 1.

As it is shown, the increase of any self-connectivity parameter leads to a decrease
in its corresponding self-connectivity parameter. For instance, if parameter α12

increases, the self-connectivity parameter α11 decreases. In addition, the increase of
any cross-connectivity parameter leads to an increase in the other cross-connectivity
parameter. These compensations are shown in Figure (6.12)-Left.

Voltage traces seems to preserve their pattern along the total-degenerated LS on the
connectivity parameter space shown in Figure (6.12)-Left, but a significant change
in the phase difference is observed.
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6.3.2 Changing intrinsic parameters

Finally, we study the dependence between the network frequency on amplitude
LSs on connectivity parameter space and intrinsic parameters. Regions on each
amplitude LS in which the network frequency is higher and lower than the individual
cell frequency are compared. Since the network is type-I heterogeneous, cells do
have the same amplitude and frequency value.

Cross-connectivity parameters α12 and α21 will be the compensating parameters
and amplitude LSs on the connectivity parameters space for the same values on the
cross-connectivity parameter space (same subspace) are compared.

Fig. (6.13) shows the network frequency on several amplitude LSs (ANet = 1.5) for
different type-I heterogeneous networks in which cells belong to different points
on the individual amplitude LS with Ka = 1. For each amplitude LS, the dark blue
region represents point of the amplitude LS in which the network frequency is higher
than the individual cell frequency while the light blue region represents point of the
amplitude LS in which the network frequency is lower.

As a result, as intrinsic parameters λ1 or λ2 are higher (cell-1 or cell-2 moves along its
individual amplitude LS towards higher values of λ1 or λ2), the network frequency
on amplitude LSs on the connectivity parameter space decreases and take lower
values.

We note that although connectivity parameter are able to change the network
frequency on a given amplitude LS, a greater effect on the network frequency is ob-
served when intrinsic parameters λ1 or λ2 are changed. Moreover, total degenerated
LSs could be found on the λ1 − λ2 − α11 − α22 parameter space as well.

6.4 Type-II Heterogeneous Two-cell Networks

Type-II heterogeneous networks represent the most general network, in which cells
belong to different individual amplitude and frequency LSs. Therefore, cells do
have different individual amplitude and frequencies values. We will not distinguish
between symmetrical and non-symmetrical type-II heterogeneous networks since
they show the same network attribute LSs properties.

Firstly, we start characterizing LSs on the connectivity parameter space. Afterwards,
we study LSs on the intrinsic parameter space of a single cell. We will study whether
or not network attributes can be maintained if only intrinsic parameters of a cell
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Fig. 6.13.: Intrinsic parameter in type-I heterogeneous two-cell network have an over-
all effect on the network frequency on amplitude LSs on the connectivity
parameter space. Both cells oscillate with amplitude value 1.5. Both cells
belong to different points of the individual amplitude LS with Ka = 1. Rows:
cell-2 moves along its individual amplitude LS. Columns: cell-1 moves along
its individual amplitude LS. Dark blue represent points in the amplitude LS for
which the network amplitude is higher than the individual cell frequency while
light blue represents points in the amplitude LS for which the network amplitude
is lower than the individual cell frequency. Parameter values: a1 = 1, ω = 1,
a2 = 1 and ω2 = 1.

in the network are changed. Finally we show total-degenerated network LSs on a
mixed parameter space involving intrinsic parameters from both cells.

6.4.1 Connectivity parameter space

Fig. (6.14) shows an example of an amplitude LS (ANet = 1.5) in an type-II
heterogeneous network for representative parameter values. It is also shown the
network frequency for each point on the amplitude LS.

The next Statement summarizes the main LSs properties on the connectivity param-
eter space in type-II heterogeneous networks.
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Fig. 6.14.: Amplitude LS on the connectivity parameter space in type-II heteroge-
neous two-cell network. Both cells oscillate with amplitude value 1.5. Left and
Middle: amplitude LS. For each pair of cross-connectivity parameters, there are
the values of self-connectivity parameters, α11 (Left) and α22 (Middle), such
as both the amplitude value of each cell in the network is preserved. Right:
frequency for each point of the amplitude LS. Parameter values: λ1 = 1, b1 = 1,
a1 = 1, ω1 = 1, λ2 = 3, b2 = 1, a2 = 1, ω2 = 1.

Statement. Type-II heterogeneous networks show 2-dimensional amplitude level sets
on the connectivity parameter space. However, the network frequency is not constant
throughout amplitude level sets on the connectivity parameter space. Consequently,
type-II heterogeneous networks show 1-dimensional total-degenerated level sets on the
connectivity parameter space.

We note type-I and type-II heterogeneous networks show similar network LSs proper-
ties on the connectivity parameter space. Both show 1-dimensional total-generated
LSs on the connectivity parameter space.

6.4.2 The intrinsic parameter space of a single cell

An interesting question in type-II heterogeneous networks is whether intrinsic
parameters of a cell can be changed preserving network attributes. In other words, is
it possible to find total-degenerated LSs on the intrinsic parameter space of a single
cell?. Without loss of generality we consider the λ1 − b1 − ω1 − a1 parameter space,
which corresponds to the intrinsic parameter space of cell-1.

Fig. (6.15) shows an example of a LS on the λ1 − b1 − ω1 − a1 parameter space
preserving the network frequency (fNet) and amplitude of cell-1 (A1). It is also
shown the amplitude value of cell-2 (A2) for each point on the LS. In particular,
curves on the LS preserving the amplitude value of cell-2 represent total-degenerated
LSs on the intrinsic parameter space of cell-1.

The next statement summarizes the main properties of attribute LSs on the intrinsic
parameter space of a single cell.
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Fig. 6.15.: Total-degenerated LS on the λ1 − b1 − ω1 − a1 parameter space. Both cells
oscillate with amplitude value 1.5. Left and middle: LS preserving the network
frequency and the amplitude of cell-1. For each pair parameters a1 and b1, there
are the values of parameters λ1 (Left) and ω1 (Middle), such as the amplitude
value of cell-1 and the frequency network is preserved. Right: amplitude value
of cell-2 for each point of the LS. Parameter values: λ2 = 1, b2 = 1, a2 = 1,
ω2 = 1, α12 = 2, α21 = 2, α11 = 0 and α22 = 0.

Statement. The two-cell network shows 2-dimensional level sets on the intrinsic param-
eter space of a single cell preserving the attributes (frequency and amplitude) of that cell
in the network. However, the amplitude value of the other cell is not constant on each
level set. Consequently, the two-cell network shows 1-dimensional total-degenerated
level sets on the intrinsic parameter space of a single cell (λ1 − b1 − ω1 − a1 or
λ2 − b2 − ω2 − a2 parameter spaces).

In order to gain insight on the different parameter compensations, Fig. (6.16)
shows in more detail the corresponding compensatory relations leading to total-
degenerated LS on the intrinsic parameter space of a single cell.
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Fig. 6.16.: Total-degenerated LS on the connectivity parameter space of a single cell.
Network amplitude, ANet = 1.5 and network frequency, fNet = 0.45. Left: total-
degenerated LS parametrized by either parameter b1 or a1. Black line represents
the projection of compensated parameters λ1 and ω1 onto the a1 − b1 parameter
space. Middle: voltage traces at the point of the LS with α12 = 0.7. Left: voltage
traces at the point of the LS with α12 = 2.2. Parameter values: λ2 = 1, b2 = 1,
a2 = 1, ω2 = 1, α11 = 0, α22 = 0, α12 = 1 and α21 = 1.

It is shown the differences on the compensatory relations between parameters.
While parameters λ1 and b1 have a positive compensation (if one increases the other
increases or vice versa), parameters ω1 and a1 have a negative compensation (if one
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increases the other decreases or vice versa). This type of compensation relations
was also seen at the individual neuron level, Eqs. (4.15) and (4.17). However, new
dependencies are observed between parameters. More specifically, parameters a1

and b1 compensate each other. An increase in parameter a1 induces an increase in
parameter b1, or vice versa. This compensatory relation is shown in Fig. (6.16)-Left
(Black curve).

Moreover, Fig. (6.16) also shows voltage traces for two different points in the total-
degenerated LS considered. Some slight differences are observed, but in contrast to
total-degenerated LSs on the connectivity parameter space no significant change in
phase difference is observed.

6.4.3 Combined parameter space

As a final result, we consider the combined λ1 − b1 − λ2 − b2 parameter space.
It involves intrinsic parameters from both cells in the network. We characterize
total-degenerated LSs in this parameter space.

Fig. (6.17) shows an example of a network amplitude LS (ANet = 1) on the
λ1 − b1 − λ2 − b2 parameter space. It is parametrized in terms of compensating
parameters λ1 and λ2. It is also shown the network frequency for each point on
the LS. In particular, curves on the amplitude LSs preserving the network frequency
represent total-degenerated LSs on the λ1 − b1 − λ2 − b2 parameter space.
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Fig. 6.17.: Total-degenerated LSs on the λ1 − b1 − λ2 − b2 parameter space. Both cells
oscillate with amplitude value 1. Left/Middle: amplitude LS on the λ1 − b1 −
λ2 − b2 parameter space. For each pair of λ1 and λ2, there are the values of
parameters, b1 (Left) and b2 (Middle), such as the amplitude of each cell is
preserved. Right: frequency in each point in the amplitude LS. Parameter values:
a1 = 1, ω1 = 1, a2 = 1, ω2 = 1, α12 = 1, α21 = 1, α11 = 0 and α22 = 0.

The next statement summarizes the main properties of network total-degenerated
LSs on the λ1 − b1 − λ2 − b2 parameter space.
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Statement. Two-cell networks show 1-dimensional total-degenerated level sets on the
λ1 − b1 − λ2 − b2 parameter space. Furthermore, total-degenerated level sets are closed
curves.

Interestingly, when considered a combined parameter space involving intrinsic pa-
rameter from both cells in the network, closed curves representing total-degenerated
LSs are found.
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Conclusion 7
7.1 Discussion

In Chapter 5, we showed that attribute LSs are preserved in type-I and type-II
heterogeneous networks only when individual cells belong to the same frequency
LS. However, only when the network is type-I heterogeneous (cells belong to the
same frequency and amplitude LSs) gap-junctions preserve individual attribute LSs.
In other words, in networks in which cells belong to different amplitude LSs (type-II
heterogeneous) gap-junctions do not preserve individual attribute LSs. In this case,
the self-connectivity of each cell has to be readjusted in order to guarantee individual
LSs preservation. More specifically, the cell with lower individual amplitude value
needs higher self-inhibition, whereas the cell with higher individual amplitude value
needs lower self-inhibition.

Moreover, we showed that as the network is more complex (it evolves from the type-I
heterogeneous case to the most general type-II heterogeneous case), the symmetrical
connectivity structure preserving LSs (gap-junctions) is broken until the point in
which the network connectivity is unable to continue preserving individual attribute
LSs (type-II with cells belonging to different frequency LSs). One question arises:
taking into account that the single neuron model considered has a high degree of
symmetries, which most probably lead to the fact that the symmetrical gap-junction
connectivity preserve attribute LSs in the type-I heterogeneous networks, what
would happen in neuronal models with lower degree of symmetries?.

It might be reasonably that when symmetries are broken, the LS structure evolve
from the “organized” structure shown in the ΛΩ2 model, to a “non-organized”
structure in which each model parameter affects the value of any attribute. It would
be something similar to what happens when the individual cell is self-connected
(Chapter 6). In this scenario, it is likely that the whole individual LS structure will
not be preserved, but some attribute LSs could be preserved, as it was shown in
[17].

Results from [17] shown that frequency LSs (on a two-dimensional parameter space)
in two electrically (gap-junctions) coupled realistic biophysical networks (with cells

59



belonging to the same frequency LS) are preserved. We note that the same feature
is observed in the two-cell network, since attribute LSs are preserved in type-I
heterogeneous networks.

In Chapter 6, we computed several network attribute LSs on different parameter
spaces, involving the connectivity parameter space or the intrinsic parameter space
of a single cell. Moreover, it was mentioned that more total-degenerated network LSs
could be found in other parameter spaces, for example parameter spaces involving
both connectivity parameters and intrinsic parameters. For the sake of simplicity,
we reduced our analysis to study until 4-dimensional parameter spaces, although
higher dimensional parameter spaces could be considered.

Nevertheless, we have verified one of the main prediction done in [20]. They predict
that if a particular homeostatic mechanism maintain m independent characteristics
(or attributes) of neural activity, then at least m parameters must be changed
as a response to a perturbation in one parameter of the system. For instance,
2-dimensional total-degenerated LSs on the intrinsic parameter space in the self-
connected cell verify that statement.

However, two-cell networks seems not to verify predictions in [20]. Several total-
degenerated LSs have been computed preserving the amplitude value of each cell
and the frequency value of each cell in the network (an overall of 4 attributes or
characteristics). We must mention that predictions in [20] were done under certain
hypothesis which might not be satisfied in the two-cell network.

As per our observations in the two-cell network, if the network shows sustained
oscillations, both cells in the network show the same frequency value. This assertion
is truly true when the inhibitory/excitatory character of self-connectivity parameter
in the network is the same. When this is not the case, the network shows “non-
standard” oscillations, in which the standard amplitude or frequency considered in
this work might not be well-defined. By an “standard” oscillation we refer then to a
sinusoidal-like oscillation.

Since the frequency value of each cell in the network is the same, a network fre-
quency is well- defined. If the network frequency is considered as a unique attribute
regarding frequencies, then predictions in [20] are verified in most LSs computed in
Chapter 6. Then, the only case in which prediction in [20] are not verified is in sym-
metrical homogeneous networks. Here, 2-dimensional total-degenerated attribute
LSs were found on the connectivity parameter space. These total-degenerated LSs
preserve the amplitude value of each cell and the network frequency. Similarly,
predictions are verified if it is considered the network amplitude (well-defined) as a
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unique attribute. Interestingly, although in symmetrical type-I or type-II heteroge-
neous networks there is also a well-defined network amplitude, the amplitude of
each cell should be considered as independent attributes in those cases.

All considered, the type of network (homogeneous or heterogeneous) and the
connectivity network architecture seem to affect predictions in [20].

Finally, we discuss to what extent intrinsic parameters of a cell in the two-cell
network can be changed maintaining network attributes constant. It was shown that
the two-cell network shows 1-dimensional total-degenerated LSs on the intrinsic
parameter space of a given cell in the network. We note that in the self-connected
cell, the same total-degenerated LSs were 2-dimensional. Therefore a reduction of
one dimension is observed when the network incorporates an addition cell. One
question arises: what would happen in a three-cell network?. Most likely, since
another attribute (the amplitude of the additional cell) should be preserved in
the total-degenerated LS, intrinsic parameters of only a given cell could not be
changed maintaining network attributes constant. In other words, it is likely that
total-degenerated LSs on the intrinsic parameter space of a single cell could not
be found and intrinsic parameters of more than one cell in the network should
be changed in order to preserve network attributes (the network frequency and
the amplitude of each cell). The same prediction could be done for more complex
networks.

Therefore, if a given target activity level was characterized by a total-degenerated
network LS of the type considered in this work, the corresponding activity-dependent
homeostatic regulation mechanism at the single neuron level would be closely related
with a more general mechanism at the network level involving other cells. However
more questions arises: what would be the role of synaptic parameters (connectivity
parameter) in such a homeostatic level at the network level or what do we exactly
mean by a network LS?

7.2 Future Work

Some open questions were given in the previous section. They constitute future lines
of research. Furthermore, there are other challenging and open problems.

Most interestingly, it is the connection between homeostatic rules and attribute LSs
and how homeostatic rules could be encoded at the model level. In this respect, the
connection between data analysis and modelling plays a fundamental role. How
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could one develop methods for the disambiguation of degeneracy. In Chapter 4, it
has been suggest a way of decode degeneracy in ΛΩ2 systems. Future work could be
focus on the development of new techniques which might involve both data analysis
and modelling.

It could also be interesting, to study more in detail the connection between the
model symmetries and the preservation of LSs. In this regard, a set of models with
different degree of symmetries could be considered. Network involving more cells
could be considered, although the basic mechanism is expected to be found on single
networks.

Finally, new research could also be focused on developing robust, non model-
dependent and optimized algorithms to compute LSs on a given parameter space in
any parameter model (or at least family of models).

7.3 Personal Conclusion

During this research experience I have learned about computational neuroscience. I
had the opportunity to attend a course about computational neuroscience, in which
I knew about the mathematical tools used in this field. I also had the opportunity to
attend several meetings and conferences, which made me know about some state
of-the-art research and open problems in neuroscience.

Moreover, I have realized the strong connection between modelling and experi-
ments/data. I truly find this field of study quite interesting.

In parallel with the development of this project, I also worked on another problem
whose goal was to understand the pathological rhythms found in the basal ganglia.
I learned about complex neuronal networks and also realistic neuronal patterns and
data.

Furthermore, I have done some presentations (Dana Knox Student Research Show-
case, CNS annual meeting,...) which, with no doubts, have contributed to the
improvement of my personal skills.

All considered, and taking into that the pandemic made impossible to attend physi-
cally the New Jersey Institute of Technology (NJIT), it has been quite an enriching
experience.

Thus, I would like to truly thank Horacio G. Rotstein for making all this possible.
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On Level Sets Preservation A
From Eqs. (5.3)-(5.6) and using a change of coordinated from Cartesian to Polar

x1 = r1 cos θ1, y1 = r1 sin θ1, x2 = r2 cos θ2 and y2 = r2 sin θ2 (A.1)

the two-cell network is described by the following set of equations

dr1
dt

= r1λ1 − r3
1b1 + cos θ1 (α11r1 cos θ1 + α12r2 cos(θ2)) (A.2)

dθ1
dt

= ω1 + a1r
2
1 − sin θ1 (α11r1 cos θ1 + α12r2 cos θ2) (A.3)

dr2
dt

= r2λ2 − r3
2b2 + cos θ2 (α21r1 cos θ1 + α22r2 cos(θ2)) (A.4)

dθ2
dt

= ω2 + a2r
2
2 − sin θ2 (α21r1 cos θ1 + α22r2 cos θ2) (A.5)

If individual level sets are preserved, then each individual oscillators presents a
limit circle with values r̄1 =

√
λ1/b1 and r̄2 =

√
λ2/b2. Necessary and sufficient

conditions for the existence of each limit circle are

α11r̄1 cos θ1 + α12r̄2 cos(θ2) = 0 (A.6)

α21r̄1 cos θ1 + α22r̄2 cos θ2 = 0 (A.7)

We note that Eqs. (A.6)-(A.7) not only do guarantee the existence of a limit circle
in each cell, but also the preservation of the individual cell frequency. From Eqs.
(A.6)-(A.7) a necessary condition for the existence of a limit circle in each cell can
be obtained.
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Statement. A necessary condition for the existence a limit circle in each cell in the
two-cell linear network is that the connectivity matrix has to be singular. Therefore,

α11α22 = α21α12 =⇒ α11
α12

= α21
α22

(A.8)

Taking into account Eq. (A.8), and Eqs. (A.6)-(A.7) one condition is obtained for
the existence of a individual limit circle in each cell

r1 cos θ1 = −Γr2 cos θ2 (A.9)

being

Γ = α12
α11

= α22
α21

(A.10)

Two set of solutions are found to Eq. (A.9) which involve amplitude and phase
difference (∆ϕ) relations between cells.

1. The first solution corresponds to two oscillators in phase

Γ = r1
r2

and θ1 = θ2 (∆ϕ = 0) (A.11)

2. The second solution corresponds to two oscillators out of phase (antiphase)

Γ = −r1
r2

and θ1 = θ2 ± π (∆ϕ = ±π) (A.12)

The previous two set of solutions are the only two possible solutions for the existence
of a (intrinsic) limit circle in each cell in the two-cell network.

Computationally, conditions for the existence of a stable limit circle in each cell can
be obtained. More specifically, the subspace on the connectivity parameter space
(the α12 − α21 parameter space) for which there exist a stable limit circle in each
cell can be obtained. Within this subspace, Eqs. (A.11)-(A.12) represent solutions
that preserve individual LSs in the two-cell network.
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Codes B
Schematic representation of the files used in each file. As an illustration, we
show files for the STN-GPe-GPi-TC network and for computing 1-dimensional total-
degenerated LSs on the connectivity parameter space (type-I heterogeneous net-
works).

STN-GPe-GPi-TC Network

Network.m

f.m

Total-degenerated LS on connectivity parameter space

Main_LS2.m

FindLevelSet.m

biseccio_iter.m

Selfpar.m

Iter.m

Traces2.m

Oscillation.m

Traces2.m

Oscillation.m

f_target.m

Selfpar.m

Iter.m

Traces2.m

Oscillation.m

Traces2.m

Oscillation.m

1 % DBS input onto a STN -GPe -GPi -Th network
2
3 % Rubin JE , Terman D (2004) . High frequency stimulation of the

subthalamic
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4 % nucleus eliminates pathological thalamic rhythmicity in a
computational

5 % model. J Comp Neurosci , 16:211 -235
6
7 % Equations taken from ModelDB
8 % https :// senselab .med.yale.edu/ modeldb / showModel . cshtml ?model

=116867& file =/ rubin_terman2004 / rubin_terman_pd .ode#tabs -1
9

10 % NORMAL STATE:
11
12 % Shift_th = -85
13 % Iapp_ge = 2
14 % Gsyn_gege = 1
15
16 % PSRKINSONIAN STATE
17
18 % Shift_th = -80
19 % Iapp_ge = -2.2
20 % Gsyn_gege = 0
21
22 % These parameters must be changed in the function @f.
23
24 clearvars ;
25 close all;
26 clc
27
28 tic
29
30 % Load initial conditions
31 load(’ci.mat ’)
32 Tmax = 700;
33
34 % Solve equations
35 options = odeset (’RelTol ’,1e-8,’AbsTol ’,1e -10);
36 [t,y] = ode45(@f ,[0 Tmax],ini , options );
37
38 % Traces plot of TC
39 figure (1)
40 hold on
41 plot(t,y(: ,1) ,’-b’,’linewidth ’ ,1);
42 axis ([0 Tmax -110 0]);
43 set(gca ,’fontsize ’ ,20);
44 xlabel (’t [ms]’);
45 ylabel (’V [mV]’);
46 title(’Thalamic cell 1’)
47
48 figure (2)
49 hold on

70 Appendix B Codes



50 plot(t,y(: ,2) ,’-b’,’linewidth ’ ,1);
51 axis ([0 Tmax -110 0]);
52 set(gca ,’fontsize ’ ,20);
53 xlabel (’t [ms]’);
54 ylabel (’V [mV]’);
55 title (’Thalamic cell 2’)
56
57 toc

Listing B.1: Network.m

1 function y = f(t,x)
2
3 % INTRINSIC PARAMETERS
4
5 % Thalamic cells
6
7 C_th = 1;
8 I_th = 5;
9 Per_th = 50;

10 Dur_th = 5;
11 Shift_th = -80;
12 Gna_th = 3;
13 Gk_th = 5;
14 Gl_th = 0.05;
15 Ena_th = 50;
16 Ek_th = -90;
17 El_th = -70;
18 Gt_th = 5;
19 Et_th = 0;
20 qht = 5.5;
21 tadj = 1;
22 apr = 4;
23 apt = 0.3;
24
25 % STN cells
26
27 Cm_sn = 1;
28 El_sn = -60;
29 Ena_sn = 55;
30 Ek_sn = -80;
31 thetam = 30;
32 sm = 15;
33 Gl_sn = 2.25;
34 Gna_sn = 37.5;
35 Gk_sn = 45;
36 Gahp_sn = 9;
37 Gca_sn = 0.5;
38 Eca_sn = 140;
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39 k1 = 15;
40 eps = 5e -5;
41 kca = 22.5;
42 thetas = 39;
43 ss = 8;
44 thetah = -39;
45 sh = 3.1;
46 thetan = -32;
47 sn = -8;
48 taun0 = 1;
49 taun1 = 100;
50 thn = 80;
51 sigman = 26;
52 tauh0 = 1;
53 tauh1 = 500;
54 thh = 57;
55 sigmah = 3;
56 phi = 0.75;
57 thetat = -63;
58 kt = -7.8;
59 Gt_sn = 0.5;
60 phir = 0.5;
61 thetar = -67;
62 kr = 2;
63 taur0 = 7.1;
64 taur1 = 17.5;
65 thr = -68;
66 sigmar = 2.2;
67 alpha = 5;
68 beta = 1;
69 ab = -30;
70 rth = 0.25;
71 rsig = -0.07;
72 Iapp_sn = 25;
73 alphai = 1;
74 betai = 0.05;
75
76 % GP cells
77
78 Cm_g = 1;
79 Gna_g = 120;
80 Gk_g = 30;
81 Gahp_g = 30;
82 Gt_g = 0.5;
83 Gca_g = 0.1;
84 Gl_g = 0.1;
85 Ena_g = 55;
86 Ek_g = -80;
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87 Eca_g = 120;
88 El_g = -55;
89 thetasg = -57;
90 ksg = 2;
91 thetas1g = -35;
92 ks1g = 2;
93 thetarg = -70;
94 krg = -2;
95 taurg = 30;
96 thetamg = -37;
97 sigmamg = 10;
98 thetang = -50;
99 sigmang = 14;

100 taun0g = 0.05;
101 taun1g = 0.27;
102 thng = -40;
103 sng = -12;
104 thetahg = -58;
105 sigmahg = -12;
106 tauh0g = 0.05;
107 tauh1g = 0.27;
108 thhg = -40;
109 shg = -12;
110 k1g = 30;
111 kcag = 15;
112 epsg = 0.0001;
113 phig = 1;
114 deltang = 0.1;
115 deltahg = 0.05;
116 alphag = 2;
117 abg = -20;
118
119 % GPe
120
121 Iapp_ge = -2.2;
122 betag = 0.04;
123
124 % GPi
125
126 Iapp_gi = 5;
127 betagi = 0.08;
128 kcagi = 15;
129 alphaggi = 1;
130 betaggi = 0.1;
131
132 % CONNECTIVITY PARAMETERS
133
134 % Thamalic cells
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135
136 Gsyn_gith = 0.06;
137 Esyn_gith = -85;
138
139 % GPi cells
140
141 Gsyn_gegi = 1;
142 Esyn_gegi = -100;
143
144 Gsyn_sngi = 0.3;
145 Esyn_sngi = 0;
146
147 % STN cells
148
149 Gsyn_gesn = 0.9;
150 Esyn_gesn = -100;
151
152 % GPe cells
153
154 Gsyn_snge = 0.3;
155 Esyn_snge = 0;
156
157 Gsyn_gege = 0;
158 Esyn_gege = -80;
159
160
161 % FUNCTIONS
162
163 % Thalamic cells
164
165 minf_th =@(V) 1./(1+ exp (-(V+37) /7));
166 hinf_th =@(V) 1./(1+ exp ((V+41) /4));
167 rinf_th =@(V) 1./(1+ exp ((V+84) /4));
168 pinf_th =@(V) 1./(1+ exp (-(V+60) /6.2));
169 tauh_th =@(V) 1./(0.128* exp (-(V+46) /18)+apr ./(1+ exp (-(V+23) /5)))

;
170 taur_th =@(V) (28+ apt*exp (-(V+25) /10.5) );
171
172 Il_th=@(V) Gl_th *(V-El_th);
173 Ina_th =@(V,H) Gna_th * minf_th (V).^3.*H.*(V- Ena_th );
174 Ik_th=@(V,H) Gk_th *(0.75*(1 -H)) .^4.*(V-Ek_th);
175 It_th=@(V,R) Gt_th* pinf_th (V).^2.*R.*(V-Et_th);
176
177 % Thalamic sensorimotor input
178
179 hv=@(x) 1./(1+ exp(-x /0.001) );
180
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181 Finput_th =@(t,I_th ,Per_th ,Dur_th , Shift_th ) I_th*hv(sin (2* pi*(t+
Shift_th )/ Per_th )).*(1 - hv(sin (2* pi*(t+ Shift_th + Dur_th )/
Per_th )));

182
183 % STN cells
184
185 ninf_sn =@(V) 1./(1+ exp ((V- thetan )/sn));
186 minf_sn =@(V) 1./(1+ exp (-(V+ thetam )/sm));
187 hinf_sn =@(V) 1./(1+ exp ((V- thetah )/sh));
188 ainf_sn =@(V) 1./(1+ exp ((V- thetat )/kt));
189 rinf_sn =@(V) 1./(1+ exp ((V- thetar )/kr));
190 sinf_sn =@(V) 1./(1+ exp (-(V+ thetas )/ss));
191 binf_sn =@(R) 1./(1+ exp ((R-rth)/rsig)) - 1./(1+ exp(-rth/rsig));
192 taun_sn =@(V) taun0 + taun1 ./(1+ exp ((V+thn)/ sigman ));
193 tauh_sn =@(V) tauh0 + tauh1 ./(1+ exp ((V+thh)/ sigmah ));
194 taur_sn =@(V) taur0 + taur1 ./(1+ exp ((V+thr)/ sigmar ));
195
196 Il_sn=@(V) Gl_sn *(V-El_sn);
197 Ik_sn=@(V,N) Gk_sn*N .^4.*(V-Ek_sn);
198 Ina_sn =@(V,H) Gna_sn * minf_sn (V).^3.*H.*(V- Ena_sn );
199 It_sn=@(V,R) Gt_sn* ainf_sn (V).^3.* binf_sn (R) .^2.*(V- Eca_sn );
200 Ica_sn =@(V) Gca_sn * sinf_sn (V) .^2.*(V- Eca_sn );
201 Iahp_sn =@(V,CA) Gahp_sn *(V-Ek_sn).*CA ./( CA+k1);
202
203 % GP cells
204
205 ninf_g =@(V) 1./(1+ exp (-(V- thetang )/ sigmang ));
206 minf_g =@(V) 1./(1+ exp (-(V- thetamg )/ sigmamg ));
207 hinf_g =@(V) 1./(1+ exp (-(V- thetahg )/ sigmahg ));
208 ainf_g =@(V) 1./(1+ exp (-(V- thetasg )/ksg));
209 rinf_g =@(V) 1./(1+ exp (-(V- thetarg )/krg));
210 sinf_g =@(V) 1./(1+ exp (-(V- thetas1g )/ks1g));
211 taun_g =@(V) taun0g + taun1g ./(1+ exp (-(V-thng)/sng));
212 tauh_g =@(V) tauh0g + tauh1g ./(1+ exp (-(V-thhg)/shg));
213 taur_g =@(V) taurg;
214
215 Il_g=@(V) Gl_g *(V-El_g);
216 Ik_g=@(V,N) Gk_g*N .^4.*(V-Ek_g);
217 Ina_g=@(V,H) Gna_g* minf_g (V).^3.*H.*(V-Ena_g);
218 It_g=@(V,R) Gt_g* ainf_g (V).^3.*R.*(V-Eca_g);
219 Ica_g=@(V) Gca_g* sinf_g (V) .^2.*(V-Eca_g);
220 Iahp_g =@(V,CA) Gahp_g *(V-Ek_g).*( CA ./( CA+k1g));
221
222 % VARIABLES
223
224 % Thalamic
225
226 V_th = x(1:2);
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227 h_th = x (3:4);
228 r_th = x (5:6);
229
230 % GPi
231
232 V_gi = x (7:22) ;
233 n_gi = x (23:38) ;
234 h_gi = x (39:54) ;
235 r_gi = x (55:70) ;
236 ca_gi = x (71:86) ;
237 s_gi = x (87:102) ;
238
239 % GPe
240
241 V_ge = x (103:118) ;
242 n_ge = x (119:134) ;
243 h_ge = x (135:150) ;
244 r_ge = x (151:166) ;
245 ca_ge = x (167:182) ;
246 s_gegi = x (183:198) ;
247 s_gesn = x (199:214) ;
248
249 % STN
250
251 V_sn = x (215:230) ;
252 n_sn = x (231:246) ;
253 h_sn = x (247:262) ;
254 r_sn = x (263:278) ;
255 ca_sn = x (279:294) ;
256 s_sngi = x (295:310) ;
257 s_snge = x (311:326) ;
258
259
260 % CONNECTIVITY MATRICES
261
262 Msyn_gith = [1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0;
263 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1];
264
265 ll = 0.2;
266
267 Msyn_snge = [0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 ll;
268 0 0 1 0 0 0 1 0 0 0 0 0 0 0 ll 0
269 1 0 0 0 1 0 0 0 ll 0 0 0 0 0 0 0
270 0 1 0 0 0 1 0 0 0 ll 0 0 0 0 0 0
271 0 0 0 1 0 0 0 1 0 0 0 ll 0 0 0 0
272 0 0 1 0 0 0 1 0 0 0 ll 0 0 0 0 0
273 0 1 0 0 1 0 0 0 0 0 0 0 ll 0 0 0
274 1 0 0 0 0 1 0 0 0 0 0 0 0 ll 0 0

76 Appendix B Codes



275 0 0 0 0 0 0 0 ll 0 0 0 1 0 0 0 1
276 0 0 0 0 0 0 ll 0 0 0 1 0 0 0 1 0
277 ll 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
278 0 ll 0 0 0 0 0 0 0 1 0 0 0 1 0 0
279 0 0 0 ll 0 0 0 0 0 0 0 1 0 0 0 1
280 0 0 ll 0 0 0 0 0 0 0 1 0 0 0 1 0
281 0 0 0 0 ll 0 0 0 0 1 0 0 1 0 0 0
282 0 0 0 0 0 ll 0 0 1 0 0 0 0 1 0 0];
283
284 Msyn_gege = [0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
285 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
286 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
287 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
288 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
289 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
290 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
291 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
292 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
293 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
294 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
295 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
296 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
297 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
298 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
299 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0];
300
301 Msyn_gesn = [0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
302 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
303 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
304 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
305 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
306 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
307 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
308 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
309 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
310 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
311 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
312 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
313 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
314 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
315 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
316 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0];
317
318 % Thalamic
319 Isyn_gith = Gsyn_gith *(V_th - Esyn_gith ).* Msyn_gith *s_gi;
320
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321 f1 = -(Il_th(V_th) + Ina_th (V_th ,h_th) + Ik_th(V_th ,h_th) + It_th(
V_th ,r_th))/C_th + ( Finput_th (t,I_th ,Per_th ,Dur_th , Shift_th ) -
Isyn_gith )/C_th;

322 f2 = tadj *( hinf_th (V_th)-h_th)./ tauh_th (V_th);
323 f3 = qht *( rinf_th (V_th)-r_th)./ taur_th (V_th);
324
325 % GPi
326
327 Isyn_gegi = Gsyn_gegi * s_gegi .*( V_gi - Esyn_gegi );
328 Isyn_sngi = Gsyn_sngi * s_sngi .*( V_gi - Esyn_sngi );
329
330 f4 = -(Il_g(V_gi) + Ik_g(V_gi ,n_gi) + Ina_g(V_gi ,h_gi) + It_g(V_gi ,

r_gi) + Ica_g(V_gi) + Iahp_g (V_gi ,ca_gi))/Cm_g + ( Iapp_gi -
Isyn_gegi - Isyn_sngi )/Cm_g;

331 f5 = deltang *(( ninf_g (V_gi)-n_gi)./ taun_g (V_gi));
332 f6 = deltahg *(( hinf_g (V_gi)-h_gi)./ tauh_g (V_gi));
333 f7 = phig *( rinf_g (V_gi)-r_gi)./ taur_g (V_gi);
334 f8 = epsg *(- Ica_g(V_gi) - It_g(V_gi ,r_gi) - kcagi*ca_gi);
335 f9 = alphag *(1- s_gi).* ainf_g (V_gi+abg) - betagi *s_gi;
336
337 % GPe
338
339 Isyn_snge = Gsyn_snge *(V_ge - Esyn_snge ).* Msyn_snge * s_snge ;
340 Isyn_gege = Gsyn_gege *(V_ge - Esyn_gege ).* Msyn_gege * s_gesn ;
341
342 f10 = -(Il_g(V_ge) + Ik_g(V_ge ,n_ge) + Ina_g(V_ge ,h_ge) + It_g(V_ge

,r_ge) + Ica_g(V_ge) + Iahp_g (V_ge ,ca_ge))/Cm_g + ( Iapp_ge -
Isyn_snge - Isyn_gege )/Cm_g;

343 f11 = deltang *(( ninf_g (V_ge)-n_ge)./ taun_g (V_ge));
344 f12 = deltahg *(( hinf_g (V_ge)-h_ge)./ tauh_g (V_ge));
345 f13 = phig *( rinf_g (V_ge)-r_ge)./ taur_g (V_ge);
346 f14 = epsg *(- Ica_g(V_ge) - It_g(V_ge ,r_ge) - kcag*ca_ge);
347 f15 = alphaggi *(1- s_gegi ).* ainf_g (V_ge+abg) - betaggi * s_gegi ;
348 f16 = alphag *(1- s_gesn ).* ainf_g (V_ge+abg) - betag* s_gesn ;
349
350 % STN
351
352 Isyn_gesn = Gsyn_gesn *(V_sn - Esyn_gesn ).* Msyn_gesn * s_gesn ;
353
354 f17 = -(Il_sn(V_sn) + Ik_sn(V_sn ,n_sn) + Ina_sn (V_sn ,h_sn) + It_sn(

V_sn ,r_sn) + Ica_sn (V_sn) + Iahp_sn (V_sn ,ca_sn))/Cm_sn + (
Iapp_sn - Isyn_gesn )/Cm_sn;

355 f18 = phi *(( ninf_sn (V_sn)-n_sn)./ taun_sn (V_sn));
356 f19 = phi *(( hinf_sn (V_sn)-h_sn)./ tauh_sn (V_sn));
357 f20 = phir *(( rinf_sn (V_sn)-r_sn)./ taur_sn (V_sn));
358 f21 = phi*eps *(- Ica_sn (V_sn) - It_sn(V_sn ,r_sn) - kca*ca_sn);
359 f22 = alphai *(1- s_sngi ).* sinf_sn (V_sn+ab) - betai* s_sngi ;
360 f23 = alpha *(1- s_snge ).* sinf_sn (V_sn+ab) - beta* s_snge ;
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361
362 % STN
363 y = [f1; f2; f3; f4; f5; f6; f7; f8; f9; f10; f11; f12; f13; f14;

f15; f16; f17; f18; f19; f20; f21; f22; f23 ];

Listing B.2: f.m

1 % This function compute the amplitude and frequency of a given
2 % sinusoidal -like voltage signal
3 %
4 % Output :
5 % amp = Amplitude
6 % f = Frequency
7 % osc = 1 if the amplitude and frequency are well computed or 0

otherwise
8
9 function [amp ,f,osc] = Oscillation (V,tmin ,tmax ,t,dt)

10
11 jmin = floor (tmin/dt);
12 jmax = floor (tmax/dt);
13
14 Vmax = zeros (1 ,1);
15 Vmin = zeros (1 ,1);
16 peakt = zeros (1 ,1);
17
18 cnt1 = 0;
19 cnt2 = 0;
20
21 for j=jmin +2: jmax -1
22
23 if V(j)>V(j -1) && V(j)>V(j+1)
24 cnt1=cnt1 +1;
25 Vmax(cnt1)=V(j);
26 peakt(cnt1)=t(j);
27 end
28
29 if V(j)<V(j -1) && V(j)<V(j+1)
30 cnt2=cnt2 +1;
31 Vmin(cnt2) = V(j);
32 end
33
34 end
35
36 Vmax = flip(Vmax);
37 Vmin = flip(Vmin);
38 peakt = diff(peakt);
39
40 T = flip(peakt);
41 e = diff(Vmax);
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42 e = abs(e);
43
44 % Avoid non - sustained oscillations
45 if isempty (e)
46
47 amp = 0;
48 f = 0;
49 osc = 0;
50
51 else
52
53 aux = (Vmax (1) -Vmin (1))/2;
54
55 % Avoid damped and non -sinusoidal -like oscillations
56 if (e(1) < 0.01 && aux > 0.1)
57 amp = (mean(Vmax)-mean(Vmin))/2;
58 f = 1/ mean(T);
59 osc = 1;
60 else
61 amp = 0;
62 f = 0;
63 osc = 0;
64 end
65 end

Listing B.3: Oscillation.m

1 % Lambda -Omega Networks : the two -cell network
2 %
3 % This function computes x_{1}, y_{1}, x_ {2} and y_ {2} traces
4 %
5 % Output :
6 % x1 : variable x_ {1}
7 % y1 : variable y_ {1}
8 % x2 : variable x_ {2}
9 % y2 : variable y_ {2}

10
11 function [x1 ,y1 ,x2 ,y2] = Traces2 (lda1 ,b1 ,omega1 ,a1 ,c1 ,d1 ,lda2 ,b2 ,

omega2 ,a2 ,c2 ,d2 ,alpha11 ,alpha12 ,alpha21 ,alpha22 ,dt ,t)
12
13 x1 = zeros (1, length (t));
14 y1 = zeros (1, length (t));
15
16 % Initial conditions
17 theta1 = 0;
18 x1 (: ,1) =sqrt(abs(lda1/b1))*cos( theta1 );
19 y1 (: ,1) =sqrt(abs(lda1/b1))*sin( theta1 );
20
21
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22 x2 = zeros (1, length (t));
23 y2 = zeros (1, length (t));
24
25 x2 (: ,1) = sqrt(abs(lda2/b2))*cos( theta1 );
26 y2 (: ,1) = sqrt(abs(lda2/b2))*sin( theta1 );
27
28 % Connection
29 gmaxeff = 1;
30
31 for j=1: length (t) -1
32
33 mod1 = x1(:,j).^2+ y1(:,j).^2;
34
35 k1x1 = lda1*x1(:,j) - omega1 *y1(:,j) - (b1*x1(:,j)+a1*y1(:,j))

.* mod1;
36 k1x1 = k1x1 - c1*y1(:,j).*(1+ x1(:,j)./ sqrt(mod1)) -(d1*y1(:,j)

.^3) ./ mod1 + gmaxeff *( alpha11 .*x1(:,j)+ alpha12 .*x2(:,j));
37
38 k1y1 = omega1 *x1(:,j) +lda1*y1(:,j) + (a1*x1(:,j)-b1*y1(:,j)).*

mod1;
39 k1y1 = k1y1 + c1*x1(:,j).*(1+ x1(:,j)./ sqrt(mod1))+d1*(x1(:,j)

.*( y1(:,j).^2))./ mod1;
40
41 ax1 = x1(:,j)+k1x1*dt;
42 ay1 = y1(:,j)+k1y1*dt;
43
44 amod1 = ax1 .^2+ ay1 .^2;
45
46
47 mod2 = x2(:,j).^2+ y2(:,j).^2;
48
49 k2x1 = lda2*x2(:,j) - omega2 *y2(:,j) - (b2*x2(:,j)+a2*y2(:,j))

.* mod2;
50 k2x1 = k2x1 - c2*y2(:,j).*(1+ x2(:,j)./ sqrt(mod2)) -(d2*y2(:,j)

.^3) ./ mod2 + gmaxeff *( alpha22 .*x2(:,j) + alpha21 .*x1(:,j));
51
52 k2y1 = omega2 *x2(:,j) +lda2*y2(:,j) + (a2*x2(:,j)-b2*y2(:,j)).*

mod2;
53 k2y1 = k2y1 + c2*x2(:,j).*(1+ x2(:,j)./ sqrt(mod2))+d2*(x2(:,j)

.*( y2(:,j).^2))./ mod2;
54
55 ax2 = x2(:,j)+k2x1*dt;
56 ay2 = y2(:,j)+k2y1*dt;
57
58 amod2 = ax2 .^2+ ay2 .^2;
59
60
61 k1x2 = lda1*ax1 - omega1 *ay1 - (b1*ax1+a1*ay1).* amod1;
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62 k1x2 = k1x2 - c1*ay1 .*(1+ ax1 ./ sqrt(amod1))-d1*ay1 .^3./ amod1 +
gmaxeff *( alpha11 .* ax1 + alpha12 .* ax2);

63
64 k1y2 = omega1 *ax1 +lda1*ay1 + (a1*ax1 -b1*ay1).* amod1;
65 k1y2 = k1y2 + c1*ax1 .*(1+ ax1 ./ sqrt(amod1))+d1*( ax1 .*( ay1 .^2))./

amod1;
66
67 x1(:,j+1) = x1(:,j)+( k1x1+k1x2)*dt /2;
68 y1(:,j+1) = y1(:,j)+( k1y1+k1y2)*dt /2;
69
70 k2x2 = lda2*ax2 - omega2 *ay2 - (b2*ax2+a2*ay2).* amod2;
71 k2x2 = k2x2 - c2*ay2 .*(1+ ax2 ./ sqrt(amod2))-d2*ay2 .^3./ amod2 +

gmaxeff *( alpha22 .* ax2 + alpha21 .* ax1);
72
73 k2y2 = omega2 *ax2 +lda2*ay2 + (a2*ax2 -b2*ay2).* amod2;
74 k2y2 = k2y2 + c2*ax2 .*(1+ ax2 ./ sqrt(amod2))+d2*( ax2 .*( ay2 .^2))./

amod2;
75
76 x2(:,j+1) = x2(:,j)+( k2x1+k2x2)*dt /2;
77 y2(:,j+1) = y2(:,j)+( k2y1+k2y2)*dt /2;
78
79 end

Listing B.4: Traces2.m

1 % Lambda -Omega Networks : the two -cell network
2 %
3 % This file compute 1- dimensional total - degenerated LSs on the

connectivity
4 % parameter space. Symmetrical type -I heterogeneous network .

Compensating parameter : alpha_ {12}
5
6
7 clearvars ;
8 close all;
9 clc

10 format long
11
12 tic
13
14 % Simulation parameters
15 Tmax = 100;
16 dt = 0.01;
17 t = 0:dt:Tmax;
18
19 tmin = 0.75* Tmax;
20 tmax = Tmax;
21
22 % Compensating parameter
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23 alpha12 = 1:0.1:3;
24
25 % Parameters cell 1
26 a1 = 1;
27 lda1 = 1;
28 b1 = 1;
29
30 c1 = 0;
31 d1 = 0;
32
33 omega1 = 1;
34
35 % Parameters for cell 2
36 a2 = 1;
37 lda2 = 3;
38 b2 = 3;
39
40 c2 = c1;
41 d2 = d1;
42
43 omega2 = 1;
44
45 % Vectors to store solution
46 M1 = zeros ( length ( alpha12 ) ,1);
47 M2 = zeros ( length ( alpha12 ) ,1);
48 M3 = zeros ( length ( alpha12 ) ,1);
49
50 % LS Attributes
51 f0 = 0.3868;
52 amp0 = 1.5;
53
54 % LS parameters
55 eps = 0.5;
56 niter = 15;
57
58 % Initial value
59 alpha21_aprox = 1;
60
61 for i1 = 1: length ( alpha12 )
62
63 % Target function
64 f = @(x) f_target (lda1 ,b1 ,omega1 ,a1 ,c1 ,d1 ,lda2 ,b2 ,omega2 ,a2 ,c2 ,

d2 , alpha12 (i1),x,dt ,t,tmin ,tmax ,amp0)-f0;
65
66 % Bisection -like algorithm
67 [ alpha21_aprox , alpha11_aprox , alpha22_aprox , error ]=

FindLevelSet ( alpha21_aprox ,eps ,f,niter ,lda1 ,b1 ,omega1 ,a1 ,c1 ,
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d1 ,lda2 ,b2 ,omega2 ,a2 ,c2 ,d2 , alpha12 (i1),dt ,t,tmin ,tmax ,amp0 ,
f0);

68
69 % Update
70 M1(i1) = alpha21_aprox ;
71 M2(i1) = alpha11_aprox ;
72 M3(i1) = alpha22_aprox ;
73
74 % Check error
75 if error > 0.01
76 break
77 end
78
79 end
80
81 % Plots
82 figure (1)
83 hold on
84 plot(alpha12 ,M1 ,’-b’,’linewidth ’ ,2);
85 set(gca ,’fontsize ’ ,20);
86 xlabel (’\ alpha_ {12} ’);
87 ylabel (’\ alpha_ {21} ’);
88
89 figure (2)
90 plot(alpha12 ,M2 ,’-r’,’linewidth ’ ,2);
91 set(gca ,’fontsize ’ ,20);
92 xlabel (’\ alpha_ {12} ’);
93 ylabel (’\ alpha_ {11} ’);
94
95 figure (3)
96 hold on
97 plot(alpha12 ,M3 ,’-g’,’linewidth ’ ,2);
98 set(gca ,’fontsize ’ ,20);
99 xlabel (’\ alpha_ {12} ’);

100 ylabel (’\ alpha_ {22} ’);
101
102
103 toc

Listing B.5: Main_LS2.m

1 % Lambda -Omega networks : the two -cell network
2 %
3 % Auxiliary funtion : compute compensated connectivity parameters

for a
4 % given value of parameter alpha_ {12} ( compensating parameter ). For

each
5 % parameter alpha_ {21} , self - connectivity parameter alpha_ {11} and
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6 % alpha_ {22} are computed to preserve the desired amplitude (amp0)
in order

7 % to a have a 1-d problem which consist on finding parameter
alpha21

8 % preserving the desired frequency (f0).
9 %

10 % Output :
11 % alpha21_aprox : compensated parameter alpha {21}
12 % alpha11_aprox : compensated parameter alpha_ {11}
13 % alpha22_aprox : compensated parameter alpha_ {22}
14 % error : sqrt ((amp1 -amp0)^2 + (amp2 -amp0)^2 + (f-f0)^2 where

amp1 is the
15 % amplitude of cell -1, amp2 is the amplitude of cell -2, f is the

network
16 % frequency , and amp0 and f0 define the desired LS on

connectivity
17 % parameter space
18
19
20 function [ alpha21_aprox , alpha11_aprox , alpha22_aprox , error ] =

FindLevelSet (ini ,eps ,f,niter ,lda1 ,b1 ,omega1 ,a1 ,c1 ,d1 ,lda2 ,b2 ,
omega2 ,a2 ,c2 ,d2 ,alpha12 ,dt ,t,tmin ,tmax ,amp0 ,f0)

21
22
23 f1 = f(ini+eps);
24 f2 = f(ini -eps);
25 ff0 = f(ini);
26 ok = 0;
27
28 % Bisection -like method to the target function f
29 if (sign(f1*ff0) == -1)
30
31 [vect_x ,~,p] = biseccio_iter ([ ini ini+eps],niter ,f);
32 alpha21_aprox = vect_x (p);
33
34 ok = 1;
35
36 elseif (sign(f2*ff0) == -1)
37
38 [vect_x ,~,p] = biseccio_iter ([ini -eps ini],niter ,f);
39 alpha21_aprox = vect_x (p);
40
41 ok = 1;
42
43 end
44
45 if (ok == 1)

85



46 % From the aproximation of compensated parameter we compute de
error

47 [ alpha11_aprox , alpha22_aprox ] = Selfpar (lda1 ,b1 ,omega1 ,a1 ,c1 ,d1
,lda2 ,b2 ,omega2 ,a2 ,c2 ,d2 ,alpha12 , alpha21_aprox ,dt ,t,tmin ,
tmax ,amp0);

48
49 [x1 ,~,x2 ,~] = Traces2 (lda1 ,b1 ,omega1 ,a1 ,c1 ,d1 ,lda2 ,b2 ,omega2 ,a2

,c2 ,d2 , alpha11_aprox ,alpha12 , alpha21_aprox , alpha22_aprox ,dt ,
t);

50
51 [amp1 ,f ,~] = Oscillation (x1 ,tmin ,tmax ,t,dt);
52 [amp2 ,~ ,~] = Oscillation (x2 ,tmin ,tmax ,t,dt);
53
54 error = sqrt ((amp1 -amp0)^2 + (amp2 -amp0)^2 + (f-f0)^2);
55
56 X = [’ERROR: ’, num2str ( error),’; alpha21 : ’, num2str (

alpha21_aprox ),’; alpha11 : ’, num2str ( alpha11_aprox ),’;
alpha22 : ’, num2str ( alpha22_aprox ) ];

57 disp(X)
58
59 else
60
61 X = (’ WARNING !!!: Zero not found. The value of eps

might be changed ’);
62 disp(X)
63
64 end

Listing B.6: FindLevelSet.m

1 % Target function
2 %
3 % Output
4 % f : frequency on the the point of the amplitude LS on

connectivity
5 % parameters space (A_{Net} = amp0) defined by the cross -

connectivity
6 % parameters alpha_ {12} and \ alpha_ {21}
7
8 function [f, alpha11aprox , alpha22aprox ] = f_target (lda1 ,b1 ,omega1 ,a1

,c1 ,d1 ,lda2 ,b2 ,omega2 ,a2 ,c2 ,d2 ,alpha12 ,alpha21 ,dt ,t,tmin ,tmax ,
amp0)

9
10 [ alpha11aprox , alpha22aprox ] = Selfpar (lda1 ,b1 ,omega1 ,a1 ,c1 ,d1 ,lda2 ,

b2 ,omega2 ,a2 ,c2 ,d2 ,alpha12 ,alpha21 ,dt ,t,tmin ,tmax ,amp0);
11
12
13 [x1 ,~ ,~ ,~] = Traces2 (lda1 ,b1 ,omega1 ,a1 ,c1 ,d1 ,lda2 ,b2 ,omega2 ,a2 ,c2 ,

d2 , alpha11aprox ,alpha12 ,alpha21 , alpha22aprox ,dt ,t);
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14
15 [~,f ,~] = Oscillation (x1 ,tmin ,tmax ,t,dt);

Listing B.7: f_target.m

1 % Auxiliary function
2 %
3 % For a given pair of cros - connectivity parameter this function

computes
4 % self - connectivity parameters alpha_ {11} and alpha_ {22} preserving

a
5 % desired network amplitue (amp0)
6 %
7 % Output
8 % alpha11aprox : value of compensated parameter alpha_ {11}
9 % alpha22aprox : value of compensated parameter alpha_ {22}

10
11 function [ alpha11aprox , alpha22aprox ] = Selfpar (lda1 ,b1 ,omega1 ,a1 ,c1

,d1 ,lda2 ,b2 ,omega2 ,a2 ,c2 ,d2 ,alpha12 ,alpha21 ,dt ,t,tmin ,tmax ,amp0)
12
13 q = 2;
14
15 alpha11aprox = 0;
16 alpha22aprox = 0;
17
18 alpha22 = -alpha21 -3:1: - alpha21 +6.5;
19 alpha11 = -alpha12 -3:1: - alpha12 +6.5;
20
21 p = 1;
22 pp = 9;
23
24 % Search - method to compute compensated parameters alpha_ {11} and \

alpha_ {22}
25 for i1 = 1:pp
26
27 if i1 >1
28
29 alpha11left = alpha11aprox -p/(q^(i1 -2));
30 alpha11right = alpha11aprox + p/(q^(i1 -2));
31 alpha22left = alpha22aprox -p/(q^(i1 -2));
32 alpha22right = alpha22aprox + p/(q^(i1 -2));
33 alpha11 = alpha11left :p/q^(i1 -1): alpha11right ;
34 alpha22 = alpha22left :p/q^(i1 -1): alpha22right ;
35
36 end
37
38 [ alpha11aprox , alpha22aprox ] = Iter(lda1 ,b1 ,omega1 ,a1 ,c1 ,d1 ,lda2

,b2 ,omega2 ,a2 ,c2 ,d2 ,alpha11 ,alpha12 ,alpha21 ,alpha22 ,dt ,t,
tmin ,tmax ,amp0);
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39 alpha11aprox = alpha11aprox (end);
40 alpha22aprox = alpha22aprox (end);
41
42 end

Listing B.8: Selfpar.m

1 % Auxiliary function
2 %
3 % Find the minimum of the function sqrt ((amp1 -amp0)^2 + (amp2 -amp0)

^2) on
4 % an given region on the alpha11 - alpha22 parameter space where amp1

is the
5 % amplitude of cell -1, amp2 is the amplitude os cell -2 and amp0 is

the
6 % amplitude value defining the desired LS on connectivity parameter

space
7 %
8 % Output :
9 % sol1: value of parameter alpha_ {11}

10 % sol2: value of parameter alpha_ {22}
11
12 function [sol1 ,sol2] = Iter(lda1 ,b1 ,omega1 ,a1 ,c1 ,d1 ,lda2 ,b2 ,omega2 ,

a2 ,c2 ,d2 ,alpha11 ,alpha12 ,alpha21 ,alpha22 ,dt ,t,tmin ,tmax ,amp0)
13
14 ampn11 = zeros( length ( alpha11 ),length ( alpha22 ));
15 ampn22 = zeros( length ( alpha11 ),length ( alpha22 ));
16 ampdif = zeros( length ( alpha11 ),length ( alpha22 ));
17
18
19 for i1 = 1: length ( alpha11 )
20
21 for i2 = 1: length ( alpha22 )
22
23 [x1 ,~,x2 ,~] = Traces2 (lda1 ,b1 ,omega1 ,a1 ,c1 ,d1 ,lda2 ,b2 ,

omega2 ,a2 ,c2 ,d2 , alpha11 (i1),alpha12 ,alpha21 , alpha22 (i2),
dt ,t);

24
25 [amp1 ,~, osc1] = Oscillation (x1 ,tmin ,tmax ,t,dt);
26 [amp2 ,~, osc2] = Oscillation (x2 ,tmin ,tmax ,t,dt);
27
28 if osc1 == 1 && osc2 == 1
29
30 ampdif (i1 ,i2) = sqrt ((amp1 -amp0)^2 + (amp2 -amp0)^2);
31
32 ampn22 (i1 ,i2) = amp2;
33 ampn11 (i1 ,i2) = amp1;
34
35 else
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36 ampdif (i1 ,i2) = 10;
37 ampn22 (i1 ,i2) = 10;
38 ampn11 (i1 ,i2) = 10;
39 end
40
41 end
42
43 end
44 [x,y] = find( ampdif == min( ampdif (:)));
45 sol1 = alpha11 (x);
46 sol2 = alpha22 (y);

Listing B.9: Iter.m

1 % Bisection method
2
3 function [vect_x ,vect_r ,pos] = biseccio_iter (Ini ,niter ,f)
4
5 vect_x = zeros (1, niter);
6 vect_r = zeros (1, niter);
7 x0 = Ini (1); f0 = f(x0);
8 a = Ini (2); fa = f(a);
9

10 if f0*fa > 0
11 error (’Interval inicial inadequat ’)
12 end
13
14 ok = 0;
15 i = 1;
16 pos = niter;
17 tol = 1e -5;
18
19 while (i <= niter && ok == 0)
20 x1 = (x0 + a)/2;
21 f1 = f(x1);
22 vect_x (i) = x0;
23 vect_r (i) = abs ((x1 -x0)/x1);
24
25 if abs(f(x0))< tol
26 pos = i;
27 ok = 1;
28 else
29 if (f1*f0 < 0)
30 a = x0;
31 end
32 x0 = x1; f0 = f1;
33 i = i+1;
34 end
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35 end

Listing B.10: biseccio_iter.m

90 Appendix B Codes




	Titlepage
	Declaration
	Abstract
	Acknowledgement
	Contents
	1 Introduction
	1.1 Background
	1.1.1 Degeneracy in Biological Systems
	1.1.2 Parameter Estimation Unidentifiability

	1.2 Significance
	1.3 Project Design
	1.4 Project Information
	1.5 Project Overview

	2 Background on Computational Neurocience
	2.1 Single neuron models
	2.1.1 The Hodgkin-Huxley model
	2.1.2 Conductance-Based models
	2.1.3 Reduced models

	2.2 Synaptic dynamics models
	2.2.1 Electrical synapses
	2.2.2 Chemical synapses

	2.3 Mathematical Models for Neuronal Networks
	2.3.1 Electrical networks
	2.3.2 Chemical networks


	3 Previous Work on Attribute Level Sets
	3.1 Existence of attribute level sets in complex systems
	3.2 Compensatory mechanisms for level set generation
	3.3 Connecting cells within the same level set

	4 Methods
	4.1  Systems
	4.1.1 2 Systems

	4.2 2 Networks
	4.3 Degeneracy and attribute level sets
	4.3.1 Degeneracy in 2 Systems
	4.3.2 Total-degeneracy

	4.4 Numerical Simulations

	5 Level Sets Preservation in 2 Networks
	5.1 The self-connected cell
	5.2 The Two-cell Network
	5.2.1 Non-Synchronized Networks Preserving Level Sets
	5.2.2 Synchronized Networks Preserving Level Sets


	6 Newly Emerged Network Level Sets
	6.1 The self-connected cell
	6.1.1 The - parameter space
	6.1.2 The -a parameter space
	6.1.3 The whole intrinsic parameter space

	6.2 Homogeneous Two-Cell Networks
	6.2.1 Symmetrical Networks
	6.2.2 Non-symmetrical Networks

	6.3 Type-I Heterogeneous Two-cell Networks
	6.3.1 Connectivity parameter space
	6.3.2 Changing intrinsic parameters

	6.4 Type-II Heterogeneous Two-cell Networks
	6.4.1 Connectivity parameter space
	6.4.2 The intrinsic parameter space of a single cell
	6.4.3 Combined parameter space


	7 Conclusion
	7.1 Discussion
	7.2 Future Work
	7.3 Personal Conclusion

	Bibliography
	A On Level Sets Preservation
	B Codes

