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1 Introduction

1.1 Project Description

The number of accidents that take place on the roads and cause deaths has been a constant matter of
concern during the last decades. In the year 2019 there were 104080 traffic accidents with victims in
Spain, which led to a total of 1755 deaths. The aim of this study is to estimate the probability of an
accident being fatal (leading to one or more deaths) and to find out which variables have an impact on
this probability, as well as to know the magnitude of the influence that each of the explanatory variables
have on the response. Hence, we could know what to improve in order to reduce the number of fatalities
on Spanish roads and we would be able to predict the number of fatal accidents given the total number
of traffic accidents.

In the present project, after introducing the variables of interest and the data of use, we are going to
create different Bayesian models to answer our questions. The first model built will be a pooled Bayesian
model in which we will use several variables, with the goal of differentiating the variables that are relevant
to those that are not. We will use this model to predict the proportion of deadly accidents of other years.
Secondly, we will build a simpler model with those variables that are more relevant to see if we can still
predict the results accurately with it. Finally, we will propose an unpooled and a hierarchical model
for the different regions (Comunidades Autónomas) to find out the differences and similarities between
them.

1.2 Data

The data used for this report has been obtained from the DGT (Dirección General de Tráfico). The
following excel file contains data (a total of 72 variables) for traffic accidents registered in 2019. The
accidents included in this database (104080) are those where there were victims (either injured or dead
people) reported.

https://www.dgt.es/menusecundario/dgt-en-cifras/dgt-en-cifras-resultados/dgt-en-cifras-detalle/

?id=00174

The following table contains a few rows of the selected variables of use unfiltered:

TOTAL MU30DF ZONA AGRUPADA HORA CONDICION METEO MES DIA SEMANA COD PROVINCIA
0 1 8 1 2 4 1
0 1 10 1 6 1 1
0 1 16 1 7 5 1
0 1 10 2 11 2 1
0 1 16 1 2 5 1
0 2 22 2 12 7 1
1 1 16 1 3 6 1
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The meaning of the categorical variables can be found in https://www.dgt.es/menusecundario/dgt-en-cifras/
dgt-en-cifras-resultados/dgt-en-cifras-detalle/?id=00175.

The corresponding code of each province can be found in https://www.ine.es/daco/daco42/codmun/

cod_ccaa_provincia.htm. We cluster the provinces into bigger regions (Comunidades Autónomas) in
the following way:

Provinces Code Region Region Code
4, 11, 14, 18, 21, 23, 29, 41 Andalućıa 1
22, 44, 50 Aragón 2
33 Asturias 3
07 Illes Balears 4
35, 38 Canarias 5
39 Cantabria 6
5, 9, 24, 34, 37, 40, 42, 47, 49 Castilla y León 7
2, 13, 16, 19, 45 Castilla La Mancha 8
8, 17, 25, 43 Cataluña 9
3, 12, 46 Comunitat Valenciana 10
6, 10 Extremadura 11
15, 27, 32, 36 Galicia 12
28 Comunidad de Madrid 13
30 Región de Murcia 14
31 Comunidad Foral de Navarra 15
1, 48, 20 Páıs Vasco 16
26 La Rioja 17
51 Ceuta 18
52 Melilla 19

1.2.1 Data Analysis

In this section we briefly analyse the data of interest.

Figure 1: Bar plot showing the fraction of fatal accidents and non-fatal accidents for each day of the
week.

Fig.1 shows, for each day the week, the number of fatal/non-fatal accidents divided by the total number
of accidents registered in each day of the week. Interestingly, Saturdays and Sundays are the days of the

2

https://www.dgt.es/menusecundario/dgt-en-cifras/dgt-en-cifras-resultados/dgt-en-cifras-detalle/?id=00175
https://www.dgt.es/menusecundario/dgt-en-cifras/dgt-en-cifras-resultados/dgt-en-cifras-detalle/?id=00175
https://www.ine.es/daco/daco42/codmun/cod_ccaa_provincia.htm
https://www.ine.es/daco/daco42/codmun/cod_ccaa_provincia.htm


week in which the number of registered fatal accidents increases. Moreover, we notice that the difference
with respect to the other days of the week is considerable.

Figure 2: Bar plot showing the fraction of fatal accidents and non-fatal accidents for each day of the
week.

Fig.2 shows, for each one time of the day (in 1-hour slots), the number of fatal/non-fatal accidents divided
by the total number of accidents registered at that time slot. We notice that it is between 3 am and 6
am where the fraction of fatal accidents is the highest.

Figure 3: Bar plot showing the fraction of fatal accidents and non-fatal accidents for month of the year.

Fig.3 shows, for each month of the year, the number of fatal/non-fatal accidents divided by the total
number of accidents registered in each month. We notice that July and August seem to be the months in
which the fraction is higher, although the difference is not significant. Unlike the previous two explanatory
variables, the relationship between the type of accident and the month of the year is not very clear.
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Figure 4: Bar plot showing the fraction of fatal accidents and non-fatal accidents for each type of road.

Fig.4 shows, for each type of road, the number of fatal/non-fatal accidents divided by the total number
of registered accidents. We notice that the type of road also affects the fraction of fatal accidents. A
higher fraction of fatal accidents are registered in inter-city roads.

Figure 5: Bar plot showing the fraction of fatal accidents and non-fatal accidents for each type of weather
condition.

Finally, Fig.5 shows, for each type of weather condition, the number of fatal/non-fatal accidents divided
by the total number of registered accidents. Similarly to the previous explanatory variable, non-favorable
weather conditions register a higher fraction of fatal accidents. However, the difference between favorable
and non-favorable is smaller in comparison to the difference between intra-city and inter-city accidents.

We will take into account these insights and relationships between the response variable and explanatory
variables to build a Bayesian model to predict the type of accident.

1.2.2 Processed data

We filter the data in order to make all the variables binary. We consider the road type to be 1 if it is
inter-city (previously 1) and 0 if it is intra-city (previously 2). The time takes 0 value when it is between
8 and 20, and 1 when it is smaller than 8 or larger than 20 (between 21 and 7). Meteo is 0 when it is
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favourable (previously 1) and 1 when it is not (previously equal or larger than 2). The holidays variable
is 1 for holidays peak season (months 7 and 8) and 0 otherwise. The weekend variable takes value 1 for
days 5, 6, 7 and 0 otherwise. The response variable is already binary. The only variable that remains
non-binary is the region code, which can take integers numbers between 1 and 19 as values, each number
corresponding to a specific region. The following table contains a few rows of the selected variables of
use after filtering them:

Fatal Road Time Meteo Holidays Weekend Region

0 1 0 0 0 0 16

0 1 0 0 0 0 16

0 1 0 0 1 1 16

0 1 0 1 0 0 16

0 1 0 0 0 1 16

0 0 1 1 0 1 16

1 1 0 0 0 1 16

In order to validate our model, we will use data of the years 2018 (found in https://www.dgt.es/

menusecundario/dgt-en-cifras/dgt-en-cifras-resultados/dgt-en-cifras-detalle/?id=00173),
2017 (found in https://www.dgt.es/menusecundario/dgt-en-cifras/dgt-en-cifras-resultados/

dgt-en-cifras-detalle/?id=00172) and 2016 (found in https://www.dgt.es/menusecundario/dgt-en-cifras/
dgt-en-cifras-resultados/dgt-en-cifras-detalle/?id=00171), which will be filtered and modified
in the same way.

1.3 Variables

The following table contains a summary of the variables used in the model. In addition to the response
variable, which is a binary variable that indicates whether an accident is fatal (1) or not (0), there are
five explanatory variables and one classification variable used to separate the data of the different regions
in Spain.

CODE NAME EXPLANATION TYPE
y Fatal Binary variable that indicates if an accident is

fatal (1) or not (0). Deaths are computed 30
days after the accident.

Response Variable

Z Road Binary variable that indicates if a road is inter-
city (1) or intra-city (0).

Explanatory Variable

T Time Binary variable that indicates if the accident
took place during the night (from 9 pm to 7
am) (1) or the day (0).

Explanatory Variable

M Meteo Binary variable that indicates if the meteo-
rological conditions are unfavourable (1) or
favourable (0).

Explanatory Variable

H Holidays Binary variable that indicates if there is the
accident took place in July or August (peak
holiday season) (1) or not (0).

Explanatory Variable

E Weekend Binary variable that indicates if the accident
took place during the weekend (from Friday
to Sunday) (1) or not (0).

Explanatory Variable

P Province Spanish provinces codes. Classification Variable

2 Bayesian Model

The first thing we want to estimate is the proportion of traffic accidents that are fatal and, in parallel,
which variables have an effect on this probability. We will consider that an accident is fatal when it leads
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to at least one death. Therefore, we propose a regression model in which the event of an accident being
fatal y follows a Bernoulli distribution with y = 0 when there are not any fatalities and y = 1 when there
is at least one dead person. Thus, θ will define the probability of an accident leading to at least one
fatality.

y ∼ Bernoulli(θ)

where 0 < θ < 1 and p(y) = θy(1− θ)1−y. The expected value of the model is E[y] = θ and the variance
corresponds to V [y] = θ(1− θ).

As we are in a regression model, the probability of an accident being fatal, θ, will have the following
expression:

log

(
θ

1− θ

)
= β0 + β1Z + β2T + β3M + β4H + β5E

where

Z =

{
1 if national road
0 otherwise

T =

{
1 if night time
0 otherwise

M =

{
1 if unfavourable meteorological conditions
0 otherwise

H =

{
1 if holiday season
0 otherwise

E =

{
1 if weekend
0 otherwise

The prior distributions of parameters βi (with i = 0, 1, 2, 3, 4, 5) will be non-informative distributions
as we do not have any previous knowledge about these parameters. We define all of them as uniform
distributions taking values between −100 and 100 because we think that, since these parameters are
modifying the slope of a straight line, this range is wide enough to include all the possible values that
they could take.

2.1 Results

We obtain the following results for the parameters βi (with i = 0, 1, 2, 3, 4, 5):

PARAMETER 95% CI EXPECTED VALUE
β0 [−5.206,−4.990] -5.102
β1 [1.266, 1.473] 1.372
β2 [0.408, 0.619] 0.511
β3 [−0.327,−0.046] -0.185
β4 [−0.027, 0.216] 0.097
β5 [0.190, 0.381] 0.285
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Figure 6: Posterior distributions of the parameters βi (i = 0, 1, 2, 3, 4, 5) with medians and 95% credible
intervals.

From the results above, we can say that the variables corresponding to the type of road and the time
have a big impact on the fatality probability in a car accident. That is, if an accident takes place in a
national road (inter-city road) and/or at night (between 9 pm and 7 am) the chances of it being deadly
increase. Among the two, the effect of the type of road is is higher rather than the time. Regarding
the other three variables, they have a smaller impact on the response. The meteorological variable has
a negative effect, which means that, according to the model and data of use, in a situation where the
meteorological conditions are unfavourable the proportion of fatal accidents is reduced. The other two
variables, holidays and weekends, have a very small influence on the response variable, meaning that the
percentage of accidents that end up being fatal is barely affected by the month or day of the week when
the accident take place. Furthermore, the intercept is large and negative.

2.2 Prediction and Validation

In order to validate the first model, we try to simulate and predict results from other years (2016, 2017
and 2018).

Firstly, we generate the distribution of theta for each individual accident of the years 2016, 2017 and
2018 using the explanatory variables (Z, T, M, H and E) of each accident and the distributions of beta
previously obtained using 2019 data. From each distribution of theta, we can simulate the number of
expected fatal accidents in a year using the Bernoulli distribution. We plot in a histogram the expected
number of fatal accidents out of the total predicted by the explanatory variables of each accident. Fur-
thermore, we calculate the mean of all the values of the total number of fatal accidents obtained and
compare it with the real value.
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Figure 7: Predicted numbers of fatal accidents in 2016. The red line corresponds to the real number of
fatal accidents and the green line, to the mean predicted value.

Figure 8: Predicted numbers of fatal accidents in 2017. The red line corresponds to the real number of
fatal accidents and the green line, to the mean predicted value.
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Figure 9: Predicted numbers of fatal accidents in 2018. The red line corresponds to the real number of
fatal accidents and the green line, to the mean predicted value.

YEAR ACCIDENTS REAL NUMBER OF FATAL ACCIDENTS PREDICTED NUMBER OF FATAL ACCIDENTS
2016 102363 1663 1596
2017 102234 1672 1625
2018 102300 1679 1626

From the obtained results it seems that the first Bayesian model predicts the proportion of deadly acci-
dents with high accuracy, even though the predicted values are slightly lower than the real ones. However,
due to the total number of accidents, the number of fatal accidents and the ratio between the two is sim-
ilar in every year, we would expect that the predicted results are close to the ones used when calculating
the posterior distributions of the parameters.

Another way to validate the model is to predict, given the explanatory variables of each individual
accident (making use of data from 2016, 2017 and 2018), the response variable of each of those accidents
using the parameter distributions obtained and check if the event of an accident being fatal or not is
correctly predicted in each case. By this method, we get that the first Bayesian model proposed predicts
the response variable with about 97%of accuracy. However, while the accuracy when predicting the
non-fatal accidents is as high as 98.5%, less than 1% of fatal accidents are correctly predicted. Hence, we
conclude that, even though the model seems to give a precise number of fatal accidents out of the total,
it is not good for predicting if a certain accident is going to be fatal given the values of the explanatory
variables of such accidents.
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Figure 10: Accuracy of prediction of 500 randomly selected accidents (top) and all fatal accidents (bottom)
in 2016. The green points indicate the accidents in which the response variable has been correctly
predicted. Alternatively, the red and blue points indicate the accidents in which the response variable
has not been predicted well. In those cases, the red color is the predicted value and the blue color is the
true value. We can observe that the prediction is good for non-fatal accidents but bad for the fatal ones.
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Figure 11: Accuracy of prediction of 500 randomly selected accidents (top) and all fatal accidents (bottom)
in 2017. The green points indicate the accidents in which the response variable has been correctly
predicted. Alternatively, the red and blue points indicate the accidents in which the response variable
has not been predicted well. In those cases, the red color is the predicted value and the blue color is the
true value. We can observe that the prediction is good for non-fatal accidents but bad for the fatal ones.
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Figure 12: Accuracy of prediction of 500 randomly selected accidents (top) and all fatal accidents (bottom)
in 2018. The green points indicate the accidents in which the response variable has been correctly
predicted. Alternatively, the red and blue points indicate the accidents in which the response variable
has not been predicted well. In those cases, the red color is the predicted value and the blue color is the
true value. We can observe that the prediction is good for non-fatal accidents but bad for the fatal ones.

3 Simplified Bayesian Model

The second Bayesian model proposed, similarly as before, is a regression model in which the event of an
accident being fatal y follows a Bernoulli distribution with y = 0 when there are not any fatalities and
y = 1 when there is at least one dead person. Thus, θ will define the probability of an accident leading
to at least one fatality.
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y ∼ Bernoulli(θ)

In this case, we will use only the two explanatory variables that had a highest influence in the first model
(the type of road and the time at which the accident occurs). Hence, the second Bayesian model is a
simplified version of the first model proposed. The probability of an accident being fatal θ will follow the
expression:

log

(
θ

1− θ

)
= β0 + β1Z + β2T

where

Z =

{
1 if national road
0 otherwise

T =

{
1 if night time
0 otherwise

The prior distributions of parameters βi (with i = 0, 1, 2) will be non-informative distributions as we do
not have any previous knowledge about these parameters. We define all of them as uniform distributions
taking values between −100 and 100 because we think that, since these parameters are modifying the
slope of a straight line, this range is wide enough to include all the possible values that they could take.

3.1 Results

We obtain the following results for the parameters βi (with i = 0, 1, 2):

PARAMETER 95% CI EXPECTED VALUE
β0 [-5.087,-4.904] -4.993
β1 [1.281,1.493] 1.386
β2 [0.422,0.628] 0.529
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Figure 13: Posterior distributions of the parameters βi (i = 0, 1, 2) with medians and 95% credible
intervals.

Using the simplified model, the distribution of the parameters βi (i = 0, 1, 2) are almost identical to the
ones obtained before.

3.2 Prediction and Validation

In order to validate the first model, we try to simulate and predict results from other years (2016, 2017
and 2018).

First, we generate the distribution of theta for each individual accident of the years 2016, 2017 and
2018 using the explanatory variables (Z and T) of this accident and the distributions of beta previously
obtained using 2019 data. From each distribution of theta, we can simulate the number of expected fatal
accidents in a year using the Bernoulli distribution. We plot in a histogram the expected number of of
fatal accidents out of the total predicted by the explanatory variables of each accident. Furthermore, we
calculate the mean of all the values of the total number of fatal accidents obtained and compare it with
the real value.
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Figure 14: Predicted numbers of fatal accidents in 2016. The red line corresponds to the real number of
fatal accidents and the green line, to the mean predicted value.

Figure 15: Predicted numbers of fatal accidents in 2017. The red line corresponds to the real number of
fatal accidents and the green line, to the mean predicted value.
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Figure 16: Predicted numbers of fatal accidents in 2018. The red line corresponds to the real number of
fatal accidents and the green line, to the mean predicted value.

YEAR ACCIDENTS REAL NUMBER OF FATAL ACCIDENTS PREDICTED NUMBER OF FATAL ACCIDENTS
2016 102363 1663 1617
2017 102234 1672 1637
2018 102300 1679 1652

From the obtained results it seems that the modified Bayesian model predicts the proportion of deadly
accidents with high accuracy, somewhat better than the previous one. Again, the predicted values are
slightly below the real values.

As before, we try to validate the model by predicting, given the explanatory variables of each individual
accident (making use of data from 2016, 2017 and 2018), the response variable of each of those accidents
using the parameter distributions obtained and check if the event of an accident being fatal or not is
correctly predicted in each case. The result we get is that the simplified Bayesian model proposed predicts
the response variable with about a 97% accuracy. However, while the accuracy when predicting the non-
fatal accidents is as high as 98.5%, less than 1% of fatal accidents are correctly predicted. Hence, similarly
as before, we conclude that, even though the model seems to give a precise number of fatal accidents out
of the total, it is not good for predicting if a certain accident is going to be fatal given the values of the
explanatory variables of such accidents.
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Figure 17: Accuracy of prediction of 500 randomly selected accidents (top) and all fatal accidents (bottom)
in 2016. The green points indicate the accidents in which the response variable has been correctly
predicted. Alternatively, the red and blue points indicate the accidents in which the response variable
has not been predicted well. In those cases, the red color is the predicted value and the blue color is the
true value. We can observe that the prediction is good for non-fatal accidents but bad for the fatal ones.
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Figure 18: Accuracy of prediction of 500 randomly selected accidents (top) and all fatal accidents (bottom)
in 2017. The green points indicate the accidents in which the response variable has been correctly
predicted. Alternatively, the red and blue points indicate the accidents in which the response variable
has not been predicted well. In those cases, the red color is the predicted value and the blue color is the
true value. We can observe that the prediction is good for non-fatal accidents but bad for the fatal ones.
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Figure 19: Accuracy of prediction of 500 randomly selected accidents (top) and all fatal accidents (bottom)
in 2018. The green points indicate the accidents in which the response variable has been correctly
predicted. Alternatively, the red and blue points indicate the accidents in which the response variable
has not been predicted well. In those cases, the red color is the predicted value and the blue color is the
true value. We can observe that the prediction is good for non-fatal accidents but bad for the fatal ones.

4 More about Prediction and Validation

In this section we give more details about the prediction and validation of our Bayesian models. We have
previously seen that the models proposed seem to be inaccurate when predicting if an accident is fatal or
not. However, we think this might be because we are not defining the correct classification rule for our
classification problem. The aim of this section is to propose a more accurate rule for classifying accidents
into fatal and non-fatal.

Firstly, the Bayesian model provides us with the posterior distribution of the parameters βi. In this case,
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we consider as a point estimator of these parameters the expected value. Then, for accident (prediction)
we will obtain a value of θ, which represents the probability that the traffic accident is fatal. If the value
of this probability is greater than a threshold (cut point c), we would classify the accident as fatal. The
cut point c = 0.025 seems to be accurate enough, leading to good performance in the prediction. We use
data from 2018 in order to predict the accuracy of both models with the new proposed value of the cut
point.

4.1 Full Bayesian Model

We first use the full Bayesian model in which all explanatory variables are considered.

The following table shows the confusion matrix when prediction traffic accidents from 2018:

Predicted

Non-fatal Fatal

A
ct
u
a
l

Non-fatal 69509 31111

Fatal 636 1043

Table 1: Full Bayesian model. Confusion matrix for traffic accidents with victims registered in 2018.
Accuracy: 0.69, Sensitivity: 0.69, Specificity: 0.62. Classification rule: c = 0.025.

4.2 Simplified Bayesian Model

We consider the simplified Bayesian model in which only the type of road and the time slot of the day
are used as explanatory variables.

The following table shows the confusion matrix when prediction traffic accidents from 2018:

Predicted

Non-fatal Fatal

A
ct
u
a
l

Non-fatal 63923 36697

Fatal 484 1195

Table 2: Confusion matrix for traffic accidents with victims registered in 2018. Accuracy: 0.64, Sensitiv-
ity: 0.64, Specificity: 0.71. Classification rule: c = 0.025.

4.3 Comparison and Summary

The probability of correct classification for both models is similar, although for the simplified Bayesian
model this probability is slightly higher.

Probability of correct classification (full model) = 0.66

Probability of correct classification (simplified model) = 0.68

In summary, given an accident with victims, if we know the type of road and the time when it took place,
the proposed simplified Bayesian model is able to predict, with probability 2/3, whether or not there was
at least one death.

If the cut point is increased, the accuracy increases but the specificity decreases and almost all accidents
are classified as non-fatal, which is what happened in the earlier prediction before changing the cut point.
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5 Differentiating Regions

In the data set we find data for the different regions (Comunidades Autónomas) in Spain, for which the
result and impact of the different variables of use could have important differences. For instance, the
amount of accidents varies between regions, as well as the percentage of fatal ones. We believe that
different results could be obtained for the distributions of the parameters if we differentiate by regions
and, hence, it is interesting to do some research on it. To do so, we develop an unpooled and a hierarchical
model, and study the differences between the two, as well as the dissimilarities with the original model.

5.1 Unpooled Bayesian Model

In this part, we define an unpooled model for the probability of an accident being fatal for each of the
different regions.
Considering that we have 19 different groups in our data set (on for each region where the accident
happened), our aim is to study the probability of an accident being fatal, θj , in the jth group so that
this parameter can be changed in each group.

We denote as yij the observation of the accident i in group j, which can take values 0 (if it is not fatal)
or 1 (if it is fatal). Thus, the unpooled model is the following:

yij ∼ Bernoulli(θj)

As it is a regression model, the probability of an accident being fatal in each region, θj , will have the
following expression:

log

(
θj

1− θj

)
= β0 + β1Z + β2T + β3M + β4H + β5E

where Z, T, M, H and E have the same meaning as before and the prior distributions of parameters βl

(with l = 0, 1, 2, 3, 4, 5) will be non-informative distributions, considered as uniforms between -100 and
100.

5.1.1 Results

The unpooled model provides the following results in each community. The posterior distributions for
each community:
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Figure 20: Posterior distributions of the parameter β0 with medians and 95% credible intervals with
respect to each community.

Figure 21: Posterior distributions of the parameter β1 with medians and 95% credible intervals with
respect to each community.
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Figure 22: Posterior distributions of the parameter β2 with medians and 95% credible intervals with
respect to each community.

Figure 23: Posterior distributions of the parameter β3 with medians and 95% credible intervals with
respect to each community.
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Figure 24: Posterior distributions of the parameter β4 with medians and 95% credible intervals with
respect to each community.

Figure 25: Posterior distributions of the parameter β5 with medians and 95% credible intervals with
respect to each community.

Because the last two regions (Ceuta and Melilla) have less data, the β parameters for them have a much
larger variance and, hence, we plot them separately in order to obtain a better visualisation.
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Figure 26: Posterior distributions of the parameters βi (i = 1, 2, 3, 4, 5) with medians and 95% credible
intervals for the regions Ceuta (left) and Melilla (right).

The values of the following table represent the mean value of each parameter βl for l = 0, ..., 5 with
respect to each community.

COMMUNITIES β0 β1 β2 β3 β4 β5

1 -5.160034 1.5178648 0.67603618 -0.5328037 0.11853696 0.22130107
2 -5.506181 2.3695506 0.53723422 0.3525167 -0.06567012 -0.06466991
3 -5.110131 1.0577466 0.71621753 -0.5024294 -1.31775638 0.67621985
4 -5.256699 0.7240936 0.88476510 -0.7351505 0.01387449 0.68505181
5 -4.857214 0.8098382 0.53867025 -0.7481468 0.38641845 0.30628333
6 -5.418619 0.6275879 1.36568434 0.5918122 0.31474454 0.10424501
7 -4.068374 0.8582823 0.01693186 -0.3598939 0.09447853 0.21239444
8 -4.123377 0.7923549 0.33795391 0.1491422 -0.03460774 0.18880388
9 -5.415729 1.2873621 0.44681633 -0.1602462 0.19860899 0.31036381
10 -4.545601 0.8448466 0.43794245 -0.2244411 -0.05738245 0.27796250
11 -4.611718 1.4384494 0.08909064 -0.5196155 -0.16637359 0.71139574
12 -4.357535 0.9751822 0.24465463 -0.3394462 -0.05656519 0.21028524
13 -5.737554 1.8167059 0.77031235 -0.1392352 0.11116835 0.26625731
14 -4.848261 1.8877146 0.22233867 -0.6597129 -0.31489111 0.28311787
15 -4.445956 1.5689599 -0.04467325 0.1761981 -0.58004143 0.66425066
16 -4.934723 0.8892216 0.80548697 -0.2971835 -0.11588502 0.02209310
17 -6.118155 2.7084407 0.49159215 -1.2914888 0.30020558 1.15161508
18 -6.144853 -47.3915358 1.45839343 -48.7188722 -53.46038728 0.21117302
19 -67.915973 -2.5618343 -26.95874470 -28.4674779 -29.63435954 -26.43377408

We can appreciate that β1 has a high impact on the 2nd and 17th regions. With respect to β2, regions 6
and 18 have a higher values of it. β3 is significant in the region 6 and β4 in regions 5,6 and 17. Finally,
we can observe that the highest value of beta5 has the regions 17 and 11.

5.2 Hierarchical Bayesian Model

Hierarchical models involve several parameters in such a way that the distributions of some depend sig-
nificantly on the values of others. That is, when separating the data in regions, the posterior distributions
of the model parameters are different, but they are still influenced by one another, and those with more
data will have a larger effect.
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We define a hierarchical model for the probability of an accident being fatal, θj , in each region j. We
consider a Bernoulli distribution:

yij ∼ Bernoulli(θj)

As we are using a regression model, the probability of an accident being fatal in each region, θj , will have
the following expression:

log

(
θj

1− θj

)
= β0 + β1Z + β2T + β3M + β4H + β5E

where Z, T, M, H and E have the same meaning as before and the prior distributions of parameters βl

(with l = 0, 1, 2, 3, 4, 5) will be non-informative distributions:

βl ∼ Normal(a, b)

Finally, we assign a uniform distribution to the hyperparameters a and b:

a ∼ Uniform(−10, 10)

b ∼ Uniform(0, 100)

5.2.1 Results

The hierarchical model provides the following results in each community. The posterior distributions for
each community:

Figure 27: Posterior distributions of the parameter β0 with medians and 95% credible intervals with
respect to each community.
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Figure 28: Posterior distributions of the parameter β1 with medians and 95% credible intervals with
respect to each community.

Figure 29: Posterior distributions of the parameter β2 with medians and 95% credible intervals with
respect to each community.
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Figure 30: Posterior distributions of the parameter β3 with medians and 95% credible intervals with
respect to each community.

Figure 31: Posterior distributions of the parameter β4 with medians and 95% credible intervals with
respect to each community.
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Figure 32: Posterior distributions of the parameter β5 with medians and 95% credible intervals with
respect to each community.

Because the last two regions (Ceuta and Melilla) have less data, the β parameters for them have a much
larger variance and, hence, we plot them separately in order to obtain a better visualisation.

Figure 33: Posterior distributions of the parameters βi (i = 1, 2, 3, 4, 5) with medians and 95% credible
intervals for the regions Ceuta (left) and Melilla (right).

The values of the following table represent the mean value of each parameter βl for l = 0, ..., 5 with
respect to each community.
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COMMUNITIES β0 β1 β2 β3 β4 β5

1 -5.139544 1.501025 0.6638797 -0.5360669 0.1171517 0.2138458
2 -5.235962 2.140049 0.5129536 0.2693747 -0.1147699 -0.119448
3 -4.856027 0.8991892 0.6532744 -0.5561966 -1.267177 0.5493901
4 -5.107487 0.6465512 0.8352997 -0.7259409 -0.05886253 0.6078631
5 -4.773373 0.7540492 0.5047915 -0.7692286 0.3733058 0.2719174
6 -4.845782 0.2771541 1.197119 0.4243067 0.2016703 0.003571044
7 -4.008199 0.8203493 0.004782583 -0.3966394 0.07564224 0.1946972
8 -4.021797 0.7504035 0.2810549 0.09450357 -0.06076106 0.1488676
9 -5.391336 1.270828 0.4367513 -0.1585975 0.1876585 0.2966312
10 -4.510724 0.8170777 0.445011 -0.2380239 -0.06075391 0.2558053
11 -4.408061 1.257542 0.06446758 -0.5376462 -0.172362 0.6604253
12 -4.275921 0.9215622 0.2328372 -0.3600652 -0.08443132 0.1819389
13 -5.702878 1.780477 0.7604651 -0.1255022 0.1045843 0.2504111
14 -4.737864 1.815785 0.1669037 -0.6665527 -0.330634 0.2246537
15 -4.22085 1.437961 -0.1149111 0.1023725 -0.6203392 0.5537564
16 -4.833206 0.8386512 0.7556018 -0.3117614 -0.1528129 -0.03589133
17 -5.195846 2.023925 0.329363 -1.217478 0.1765413 0.8642478
18 -4.745743 -1.499268 0.1335809 -1.611855 -1.722964 -0.5274259
19 -5.865938 -0.6604871 -1.496242 -1.119081 -1.348944 -1.642314

We can appreciate that β1 has a high impact on the 2nd and 17th regions. With respect to β2, regions 6,
13 and 16 have a higher values of it. β3 is significant in the region 6 and β4 in regions 5 and 6. Finally,
we can observe that the highest value of β5 has the regions 4 and 10.

5.3 Comparison of the models

In the following plots one can observe the comparison between the pooled, the unpooled and the hierar-
chical Bayesian models.

Figure 34: Comparison of the obtained values of β0 using the hierarchical, pooled and unpooled models.
The x-axis represent the community and the y-axis the mean values of the parameter β0 for each model.
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Figure 35: Comparison of the obtained values of β1 using the hierarchical, pooled and unpooled models.
The x-axis represent the community and the y-axis the mean values of the parameter β1 for each model.

Figure 36: Comparison of the obtained values of β2 using the hierarchical, pooled and unpooled models.
The x-axis represent the community and the y-axis the mean values of the parameter β2 for each model.
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Figure 37: Comparison of the obtained values of β3 using the hierarchical, pooled and unpooled models.
The x-axis represent the community and the y-axis the mean values of the parameter β3 for each model.

Figure 38: Comparison of the obtained values of β4 using the hierarchical, pooled and unpooled models.
The x-axis represent the community and the y-axis the mean values of the parameter β4 for each model.
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Figure 39: Comparison of the obtained values of β5 using the hierarchical, pooled and unpooled models.
The x-axis represent the community and the y-axis the mean values of the parameter β5 for each model.

From the previous plots the first thing we can see is that in case of the pooled model there are not any
differences between the different regions, which is obvious.

When we use the unpooled model we are defining different regions as completely independent from one
another and, thus, for those regions with a small amount of data the parameters’ values obtained are
extreme and with large variance. Furthermore, these values of β could be unreliable, as in some cases we
could have a sample that could be too small.

On the other hand, when we build the hierarchical model we are implying that the different regions are
somehow independent, but still have some influence on one another. Moreover, those regions with a large
number of data will have a higher weight, and vice versa. Hence, we obtain a better approximation of
the real values of the parameters if we want to make predictions, as we are assuming that the variables
might be different between the different regions, but still allowing some relationship between them.

6 Conclusions

Initially, we constructed two different Bayesian models in order to estimate and predict the probability of
an accident leading to at least one death or not. The first model built considered a total of five different
explanatory variables, two of which had a higher impact than the others on the response. Hence, we built
a simplified Bayesian model with only these two explanatory variables.

When we tried to predict the number of fatal accidents out of the total number of accidents for other
years, we observed that both models were providing an accurate result. However, this could have been
possible because the proportion in all years were comparable, we tried to predict specifically the event
of fatality for each specific accident and found out that the model was not precise at all since less than
1% of the fatal accidents were correctly predicted. We thought this could be because we were using a
cut point that was too high and, consequently, was leading to a very low specificity, causing almost all
accidents to be classified as non-fatal. Therefore, we tried using a smaller value of the cut point and
managed to obtained a probability of correct classification approximately of 2/3 in both models.
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After building and validating the main models, we studied the differences between the different regions
(Comunidades Autónomas) in Spain. We created an unpooled model where the data is completely
separated in regions and we do not allow any influence between them. The result obtained was that
those regions with a larger sample have parameters’ values that are closer to the pooled model and, on
the contrary, the ones with a small amount of data provide extreme values of the parameters and large
variances, which seems to be less reliable. Finally, we used a hierarchical model, where the data is also
divided in regions, but there was influence between them. Thus, those regions with more data will have
a greater influence on the others. This lead to observe results closer to the average values obtained when
the regions are not differentiated, but we can still see differences between them.
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